Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T22:15:12.745Z Has data issue: false hasContentIssue false

Gamma Ray and X-Ray Imaging Studies of the Location and Shape of the Melt-Solid Interface During Bridgman Growth of Germanium and Lead-Tin-Telluride

Published online by Cambridge University Press:  06 March 2019

R. T. Simchick
Affiliation:
Lockheed Engineering and Sciences Corporation Hampton, Va.23666
S. Sorokach
Affiliation:
Lockheed Engineering and Sciences Corporation Hampton, Va.23666
A. L. Fripp
Affiliation:
NASA Langley Research Center Hampton, VA 23665
W. J. Debnam
Affiliation:
NASA Langley Research Center Hampton, VA 23665
R. F. Berry
Affiliation:
NASA Langley Research Center Hampton, VA 23665
P. G. Barber
Affiliation:
Longwood College Farmville, VA 23901
Get access

Extract

The success of new electronic materials has been due in part to the development of procedures that produce semiconductors of sufficient purity and perfection. These materials have been grown from the gas phase, solution, and melts. The Bridgman technique is one way semiconductor crystals are grown from the melt. In such furnaces the semiconductor material is usually sealed in an ampoule made of quartz or other suitable material, placed inside the tubular furnace, and heated to completely melt the sample. The ampoule with the molten material is slowly removed from the furnace by one of three ways.

Type
XV. X-Ray Imaging and Tomography
Copyright
Copyright © International Centre for Diffraction Data 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barber, P. G., Crouch, R. K., Fripp, A. L., Clark, I. D., Debnam, W. J., and SimchicK, R. T., J. Mtls. Res. Soc. Europe, 1985.Google Scholar
2. Kakimoto, K., Eguchi, M. C., Watanabe, H., Taketoshi, and Hibiya, T., J. Cryst. Growth 91 (1988) 509.10.1016/0022-0248(88)90118-2Google Scholar
3. Huang, Y., Debnam, W. J. and Fripp, A. L., J. Cryst. Growth 104 (1990) 315.10.1016/0022-0248(90)90132-5Google Scholar
4. Capper, P., Gosney, J. J. G., and Quelch, M. T., J.Cryst. Growth 63 (1983) 154.10.1016/0022-0248(83)90440-2Google Scholar
5. Witt, A. F., Gatos, H. C., Lichtensteiger, M., Lavine, M. C., and Herman, C. J., J. Electrochem. Soc. 122 (1975) 276.10.1149/1.2134195Google Scholar
6. Kim, K. M., Witt, A. F., Lichtensteiger, M., and Gatos, H. C., J. Electrochein. Soc. 125 (1978) 475.10.1149/1.2131477Google Scholar
7. Barber, P. G., Crouch, R. K., Fripp, A. L., Debnam, W. J., Berry, R. F. and Simchick, R. T., J. Cryst. Growth 74 (1986) 228230.10.1016/0022-0248(86)90270-8Google Scholar
8. Dougherty, E. R. and Giardina, C. R., Image Processing Continuous to Discrete, Vol. 1 Prentiss-Hall, Inc. Newark (1987) 59.Google Scholar
9. Barber, P. J., Berry, R. F., Debnam, W. J., Fripp, A. L., Huang, Y., Stacy, K., and Simchick, R. T., J. Cryst. Growth 97 (1989) 672.10.1016/0022-0248(89)90569-1Google Scholar