Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T09:19:20.877Z Has data issue: false hasContentIssue false

Fundamentals of X-ray Spectrometric Analysis Using Low-Energy Electron Excitation

Published online by Cambridge University Press:  06 March 2019

K. J. Romand
Affiliation:
Department of Applied Chemistry and Chemical Engineering (CNRS, URA 417), Université Claude Bernard - Lyon I F-69622 Villeurbanne cedex, France
F. Gaillard
Affiliation:
Department of Applied Chemistry and Chemical Engineering (CNRS, URA 417), Université Claude Bernard - Lyon I F-69622 Villeurbanne cedex, France
M. Charbonnier
Affiliation:
Department of Applied Chemistry and Chemical Engineering (CNRS, URA 417), Université Claude Bernard - Lyon I F-69622 Villeurbanne cedex, France
D. S. Urch
Affiliation:
Department of Applied Chemistry and Chemical Engineering (CNRS, URA 417), Université Claude Bernard - Lyon I F-69622 Villeurbanne cedex, France
Get access

Extract

In the field of material analysis and characterization interest has considerably shifted over the last few decades from bulk to surface and very thin film problems. At the present state a wide range of surface analytical techniques - such as x-ray photoelectron (XPS), Auger electron (AES), secondary ion mass (SIMS), ion scattering (ISS) spectroscopies - have become available but every one of them exhibits specific analytical features and information content. Within the context of this paper the main parameter to be considered is the information depth i.e the layer thickness from which the majority of information-bearing particles escape and hence are detected. For XPS and AES, this parameter is associated with the mean-free path of photoelectrans or Auger electrons and typically is in the range from 0.5 to 4 nm. In SIMS the ejected secondary ions are emitted from the outer 2 or 3 atomic layers (i.e. from about 1 nm) while the single-collision binary process occuring in ISS is restricted to atoms from the top most atomic layer (0.2-0.3 nm).

Type
III. Long-Wavelength X-Ray Spectrometry
Copyright
Copyright © International Centre for Diffraction Data 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bador, R., Romand, M., Charbonnier, M., and Roche, A., Adv. in X-ray Anal. 24: 351 (1981).Google Scholar
2. Romand, H., Bador, R., Charbonnier, M., and Gaillard, F., X-ray Spectrom. 16: 7 (1987).Google Scholar
3. Charbonnier, K., Romand, M., and Gaillard, F., Analysis 16(Suppl. 9-10):17 (1938).Google Scholar
4. Romand, M., Charbonnier, M., and Gaillard, F., J. de Physique 48(Suppl.#12):C9-87 (1987).Google Scholar
5. Romand, M., Gaillard, F., and Charbonnier, M., in “Plasma Surface Engineering”, Vol. 2, E. Broszeit et al, Eds., DGK Informationsgesellschaft Verlag, Oberursel (1989).Google Scholar
6. Stobbe, H., Ann. Phys. 7: 661 (1930).Google Scholar
7. Gryzinski, H., Phys. Rev. A138: 305 (1965).Google Scholar
8. Heinrich, K. F. J., in “Electron Beam x-Ray Microanalysis”, Van Nostrand Reinhold Company, New-York (1981).Google Scholar
9. Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C., and Lifshin, E., in “Scanning Electron Microscopy and x-Ray Microanalysis”, Plenum Press, New-York (1981).Google Scholar
10. Ducumb, P., in “Proc. 2nd Int. Symp. on x-ray Optics and x-ray Microanalysis”, Elsevier, Amsterdam (1960) p. 365.Google Scholar
11. Andersen, C. A., and Hasler, K. F., in “Proc, 4th Int. Cong, on x-ray Optics and Microanalysis”, R. Castaing et al, Ed., Hermann, Paris (1966).Google Scholar
12. Reed, S. J. B., in “Proc. 4th Int. Cong, on x-ray Optics and Microanalysis”, R. Castaing et al, Ed., Hermann, Paris (1966).Google Scholar
13. Heinrich, K. F. J. quoted by H. Yakowitz and D. E. Newbury.Google Scholar
14. Yakowitz, H., and Newbury, D. E., in “Proc. IITRI/SEM, IIT Research Inst., Chicago (1976).Google Scholar
15. Castaing, R., in “Adv. in Electronics and Electron Physics”, Vol. 13, L. Marton, Ed., Academic New-York (1960).Google Scholar
16. Kanaya, K., and Okayama, S., J. Phys. D: Appl. Phys. 5: 43 (1972).Google Scholar
17. Reuter, W., Kuptsis, J. D., Lurio, A., and Kyser, D. F., J. Phys. D: Appl. Phys. 11: 2633 (1978).Google Scholar
18. Feldman, C., Phys. Rev. 177: 455 (1960).Google Scholar
19. Roche, A., Cachard, A., Bador, R., Buiguez, F., Charbonnier, M., and Romand, M., J. Microsc. Spectrosc. Electron. 4: 351 (1979).Google Scholar
20. Powell, C. J., Rev. Modern Phys. 48: 33 (1976).Google Scholar
21. Powell, C. J., Ultramicroscopy 28: 24 (1989).Google Scholar
22. Casnati, E., Tartari, A., and Baraldi, C., J. Phys. B15: 155 (1982).Google Scholar
23. Jakoby, C., Genz, H., Sitcher, A., J. de Physique 48(Suppl.#12): 49487 (1987).Google Scholar
24. Doig, P.. Lonsdale, D., and Flewitt, P. E. J., in “Electron Microscopy 1980”, Vol. 3 Analysis, P. Brederoo and V. E. Coslett, Eds., Seventh European Congress on Electron Microscopy Foundation, Leiden (1980).Google Scholar
25. Parobek, L., and Brown, J. D., X-Ray Spectrom. 7: 26 (1978).Google Scholar
26. Love, G., and Scott, V. D., Electron Microsc. 3: 146 (1980).Google Scholar
27. Bastin, G. F., and Heijligers, J. M., X-Ray Spectrom. 15: 143 (1986).Google Scholar
28. Pouchou, J. L., and Pichoir, F., Recti. Aerospat. 3: 167 (1984).Google Scholar
29. Pouchou, J. L., and Pichoir, F., Rech. Aerospat. 5: 349 (1985).Google Scholar
30. Pouchou, J. L., and Pichoir, F., J. de Physique 45(Suppl.#2):C2-17 (1984).Google Scholar
31. Hecq, M., and Legrand, P., Unpublished Results.Google Scholar
32. Sewell, D. A., Hall, I. D., Love, G., Partridge, J. P., and Scott, V. D., J. de Physique 45(Suppl.#2):C2-33 (1984).Google Scholar
33. Wiech, G., and Zahorowski, W., J. de Physjgue 48(Suppl.#12):C9-935 (1987).Google Scholar
34. Brown, J. D., and Parobek, L., X-Ray Spectrom., 5: 36 (1976).Google Scholar
35. Sewell, D. A., Love, G., and Scott, V. D., J. Phys. D: Appl. Phys. 18: 1233 (1985); 18: 1245 (1985): 18: 1269 (1985).Google Scholar
36. Willich, P., Obertop, D., and Tolle, H. J., X-Ray Spectrom. 14:84 (1985).Google Scholar