Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T15:43:36.152Z Has data issue: false hasContentIssue false

The Fitting of Powder Diffraction Profiles to Ananalytical Express Ion and the Influence of Line Broadening Factors

Published online by Cambridge University Press:  06 March 2019

Allan Brown
Affiliation:
Studsvik Energiteknik, S-611 82 Nyköping, Sweden
J. W. Edmonds
Affiliation:
Dow Chemical Company, Midland, MI 48640, USA
Get access

Abstract

Powder diffraction profiles of well crystallized compounds can be fitted to distributions of the type Iθ=I°(1 + k2x2)-n where k is a scale factor related to the half width of the profile. The value of n varies with the diffraction angle, 2θ, and is generally different for the low-angle and high-angle sides of the same profile. Limiting values of n for a specific Guinier camera-micro-densitometer combination are 1.2 ≤ n ≤ 2.3. Similar values are obtained for diffracto meter profiles after Ktt2 stripping. Line broadening due to departure from perfect crystallinity in the specimen affects the value of n a swell as that of k.

The above observations are interpreted interms of the convolution of a Gaussian with a Lorentzian distribution, the exponent n of the convolute being dependent upon the relative half widths of these two functions, expressed as the ratio bL/bG.

Type
X-Ray Diffraction in Materials Analysis
Copyright
Copyright © International Centre for Diffraction Data 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jones, F. W., “The measurement of particle size by the X-ray method”, Proc. Roy. Soc. A 166 16 (1938).Google Scholar
2. Schoening, F. R. L., van Niekerk, J. N. and Haul, R. A. W., “Influence of the apparatus function on cyrstallite size determinations”, Proc. Phys. Soc., London B 65 528 (1952).Google Scholar
3. Sonneveld, E. J. and Visser, J. W., “Automatic collection of powder data from photographs”, J. Appl. Cryst. 81 (1975).Google Scholar
4. Malmros, G. and Thomas, J. O., “Least-squares structure refinement based on profile analysis”, J. Appl. Crys. 107 (1977).Google Scholar
5. Khattak, C. P. and Cox, D. E., “ Profile analysis of diffractometer data”, J. Appl. Cryst. 10 405 (1977).Google Scholar
6. Hall, M. H. Jr and Veerarghavan, V. G., “The approximation of symmetric X-ray peaks by Pearson type VII distributions”, J. Appl. Cryst. 10 66 (1977).Google Scholar
7. Edmonds, J. W. and Henslee, W. W., “Application of Guinier camera, microcomputer controlled film densitometry”, Advances in X-ray Anal., Vol 22, 143, Plenum Press (1979).Google Scholar
8. Keating, D. T., “Elimination of the a10(2 doublet in X∼ray patterns”, Rev. Sci. Instr. 30 725 (1959).Google Scholar
9. Bystrom-Asklund, A. M., “Sample cups and a technique for sideward packing of X-ray diffractometer specimens. Am. Mineral. 51 1233 (1966).Google Scholar
10. Garrod, R. I., Brett, J. P. and MacDonald, J. A., “X-ray line broadening and pure diffraction contours”, Australian J. Phys. 7 77 (1954).Google Scholar
11. Alexander, L., “The synthesis of X-ray spectrometer line profiles with application to crystallite size measurements”, J. Appl. Phys. 25 155 (1954).Google Scholar
12. Alexander, I., “Geometrical factors affecting the contours of X-ray spectrometer maxima”, J. Appl. Phys. 19 1068 (1948).Google Scholar
13. de Wolff, P. M., “Multiple Guinier cameras”, Acta Cryst. 11 207 (1948).Google Scholar
14. Hofmann, E-G. and Jagodinski, H., “Ein neue, hochauflosende Rontgenfeinstruktur-Anlage mit verbessertem, fokussierendem Monochromator und Feinfokusrohire”, Z. fur Metallkunde 46 601 (1948).Google Scholar