Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T01:34:29.120Z Has data issue: false hasContentIssue false

Comparison of Various Descriptions of X-Ray Tube Spectra

Published online by Cambridge University Press:  06 March 2019

B. Schoßmann
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Haiiptstr. 8-10 A 1040 Wien, Germany
H. Wiederschwinger
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Haiiptstr. 8-10 A 1040 Wien, Germany
H. Ebel
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Haiiptstr. 8-10 A 1040 Wien, Germany
J. Wernisch
Affiliation:
Institut für Angewandte und Technische Physik Technische Universität Wien Wiedner Haiiptstr. 8-10 A 1040 Wien, Germany
Get access

Extract

We have developed an algorithm for calculating the x-ray tube continuum based on the eqidistribution proposed by Love and Scott, extended the description of white and characteristic radiation given by Wiederschwinger et al for the energy range 10 to 50 keV to the low energy range from 5 to 30 keV, and compared the results from this algorithm to those responses obtained from algorithms using the absorption correction of Pochou and Pichoir, Philibert, Sewell and Pella. The comparison to other models showed a significandy better performance by our model.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Handbook of X-ray Spectrometry, Ed. Van Grieken, R. F. and Markowicz, A. A., Marcel Dekker, Inc. (1993).Google Scholar
2. Gertner, I., Heber, O., Zajfman, J., Zajfman, D. and Rosner, B., Nucl. Instr. and Meth. B36, 7481 (1989).Google Scholar
3. Fiori, C. E., Myklebust, R. L. and Heinrich, K. F. J., Anal. Chem., 48, 172 (1076).Google Scholar
4. Smith, D. G. W. and Reed, S. J. B., X-Ray Spectrom. 10, 4 198-202 (1981).Google Scholar
5. Kramers, H. A., Phil. Mag. 46, 836871 (1923).Google Scholar
6. Ebel, H., Wiederschwinger, H. and Weraisch, J., Adv. X-Ray Anal., 35, 721 (1992).Google Scholar
7. Pouchou, J. L. and Pichoir, F., Electron Probe Quantitation, Ed. Heinrich and Newbury, Plenum Press, 31-75(1991).Google Scholar
8. Sewell, D. A., Love, G. and Scott, V. D., J. Phys. D: Appl. Phys. 18 12691280 (1985).Google Scholar
9. Statham, P. J., X-Ray Spectrom. 5, 154168 (1976).Google Scholar
10. Pella, P. A., Liangyuan Feng and Small, J. A., X-Ray Spectrom. 14, 3 125-135(1985).Google Scholar
11. McMaster, W. H., del Grande, N. K., Mallett, J. H. and Hubbell, J. H., Compilation of X-Ray Cross Sections, UCRL-50174, Sect. II, Rev. l, Lawrence Radiation Laboratory, University of California, Livermore, CA (1969).Google Scholar
12. Myklebust, R. L., J. Phys. 45 (Suppl. 2), C2-41 (1984).Google Scholar
13. Johnson, G. G. Jr. and White, E. W., X-Ray Emission and keV Tables for NondiflEractive Analysis, ASTM Data series DS 46, Philadelphia (1970).Google Scholar