Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T02:24:54.516Z Has data issue: false hasContentIssue false

Common Sources of Error in Electron Probe Microanalysis

Published online by Cambridge University Press:  06 March 2019

Kurt F. J. Heinrich*
Affiliation:
Analytical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D.C.
Get access

Abstract

In order to reduce the error of quantitative electron probe microanalysis, error sources in the preparation and measurement of specimens and standards must be minimized. These sources of error are described, and literature references for detailed study are given. A critical analysis is made of 150 analytical measurements of binary specimens previously discussed by Poole and Thomas. It is shown that the cases of serious errors reported by these authors are mainly due to poorly characterized or measured specimens and, in. some cases, to the omission of characteristic fluorescence corrections. If these sources of error are eliminated, a much more favorable error distribution can be obtained through relatively simple correction calculations. Further progress in quantitative micro probe analysis is dependent upon measurements under well-controlled conditions and standard materials of experimentally proven microhomogeneity and reliably determined composition.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Castaing, R., “Application des sondes électroniqucs à une méthode d'analyse ponctuelle chimique et cristallographique” (Application of Electron Beams to a Method for Local Chemical and Crystallographical Analysis), Thesis, University of Paris, 1951.Google Scholar
2. Heinrich, K., Bibliography on Electron Probe Microanalysis and Related Subjects, third edition, E. I. DuPont de Nemours & Co., Inc., Wilmington, Delaware, 1963; Supplement, 1965. (Obtainable from the author.)Google Scholar
3. Castaing, R. and Descamps, J., “Sur les bases physiques de l'analyse ponctuelle par spectrographie x” (On the Phvsical Bases of Point Analysis by X-Ray Spectrography), J. Phys. Radium 16: 304, 1955.Google Scholar
4. Thomas, P. M., ‘ A Method for Correcting for Atomic Number Effects in Electron Probe Microanalysis,” At. Energy Res. Estah. (Gt. Brit.) Rept. 4593, 1964.Google Scholar
5. Poole, D. M. and Thomas, P. M., “Correction of Atomic Number Effects in Microprobe Analysis,” in: T. D. McKinley, K. F. J. Heinrich, and D. M. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 269.Google Scholar
6. Yakowitz, H., “Evaluation of Specimen Preparation and the Use of Standards in Electron Probe Microanalysis,” ASTM Spec. Tech. Pubt. 430: 383, 1968.Google Scholar
7. PicMesimer, M. L. and Hallerman, G., “The Influence of the Preparation of Metal Specimens on the Precision of Electron Probe Microanalysis,” U.S. At. Energy Contm. Rept. ORNL-TM-1591, 1965.Google Scholar
8. Adler, I., Dwornik, E. J., and Rose, H. J. Jr., “The Detection of Sulphur in Contamination Spots in Electron Probe X-Ray Microanalysis,” Brit. J. Appl. Phys. 13: 245, 1962.Google Scholar
9. Ranzetta, G. V. T. and Scott, V. D., “Specimen Contamination in Electron Probe Microanalysis and its Prevention Using a Cold Trap,” J. Sri. Instr. 43 : 816, 1966.Google Scholar
10. Borom, M. P. and Hanneman, R. E., “Local Compositional Changes in Alkali Silicate Glasses During Electron Microprobe Analysis,” General Electric Rept. 66-C-484, 1966; J. Appl. Phys. 38: 2406, 1967.Google Scholar
11. Ziebold, T. O. and Ogilvie, R. E., “An Empirical Method for Electron Microanalysis,” Anal. Chem. 36: 322, 1964.Google Scholar
12. Colby, J. W., “The Applicability of Theoretically Calculated Intensity Corrections in Microprobe Analysis,” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 95.Google Scholar
13. Bejman, D. R., “Evaluation of Correction Procedures Used in Electron Probe Microanalysis with Emphasis on Atomic Number Interval 13 to 33, “ Anal. Chem. 39: 418, 1967.Google Scholar
14. Goldstein, J. I., Majeske, F. J., and Yakowitz, H., “Preparation of Electron Probe Microanalyzer Standards Using a Rapid Quench Method,” in: J. B. Newkirk and G. R. Mallett (eds.), Advance! in X-Ray Analysis, Vol. 10, Plenum Press, New York, 1967, p. 431.Google Scholar
15. Duwez, J., Willens, R. H., and Klenient, W. Jr., “Continuous Series of Metastable Solid Solutions in Ag-Cu Alloys,” J. Appl. Phys. 31: 1136, 1960.Google Scholar
16. Liebhafsky, H. A., Pfeiffer, H. G., and Zemany, P. D., “Precision in X-Ray Emission Spectrographic” Anal. Chem. 26: 1257, 1955.Google Scholar
17. Heinrich, K. F. J., “Count Distribution and Precision in X-Ray Fluorescence Analysis,” in: W, M. Mueller (ed.), Advances in X-Ray Analysis. Vol. 3, Plenum Press, New York, 1959, p. 95.Google Scholar
18. Mack, M. and Spielberg, N., “Statistical Factors in X-Ray Intensity Measurements,” Spectrochim. Acta 12: 169, 1958.Google Scholar
19. Birks, L. S. and Batt, A. P., “Use of a Multichannel Analyzer for Electron Probe Analysis,” Anal. Chem. 35: 778, 1963.Google Scholar
20. Heinrich, K. F. J., “Concentration Mapping Device for the Scanning Electron Probe Microanalyzer,” Rev. Sci. Instr. 33: 884, 1962.Google Scholar
21. Deslattes, R. D., Simson, B. G., and La Villa, R. E., “Gas Density Stabilizer for Flow Proportional Counters,” Rev. Sci. Instr. 37: 596, 1966.Google Scholar
22. Davies, T. A., “The Effect of Variations in Ambient Temperature upon the Optical Alinement of an X-Ray Fluorescence Spectrometer,” J. Sci. Instr. 35: 407, 1958.Google Scholar
23. Ogilvie, R. E., “X-Ray Optics in Electron Microanalysis,” ASTM Spec. Tech. publ. 349: 17, 1963.Google Scholar
24. Malissa, H., Elektronensirahl-Mikroanalyse, Springer-Verlag, Vienna and New York, 1966, p. 98.Google Scholar
25. Baun, W. L. and Fischer, D. W., “The Effect of Valence and Coordination on K Series Diagram and Nondiagram Lines of Magnesium, Aluminum, and Silicon,” in: W. M. MueLcr, G. R. Mallett, and M. J. Fav (eds.), Advances in X-Ray Analysis, Vol. 8, Plenum Press, New York, 1965, p. 371.Google Scholar
26. Bender, S. L. and Rapperport, E. J., “Nonproportional Behavior of the Flow Proportional Detector” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 405.Google Scholar
27. Spielberg, N., “Elimination of Intensity Dependent Shifts in Proportional Counter Pulse Height Distributions,” Rev. Sci. Instr. 37: 1268, 1966.Google Scholar
28. Spielberg, N., “Effect of Anode Material on Intensity Dependent Shifts in Proportional Counter Pulse Height Distributions,” Rev. Sci. Instr. 38: 291, 1967.Google Scholar
29. Heinrich, K. F. J., Vieth, D., and Yakowitz, H., “Correction for Non-Linearity of Proportional Counter Systems in Electron Probe X-Ray Microanalysis,” in: G. R. Mallett, M. J. Fay, and W. M. Mueller (eds.). Advances in X-Ray Analysis, Vol. 9, Plenum Press, New York, 1966, p. 208.Google Scholar
30. Philibsrt, J., “L'analyse quantitative en microanalyse par sonde electronique, troisitme partie (Quantitative Analysis in Microanalysis by the Electron Probe), Metaux Corrosion-Ind. 40: 325, 1964.Google Scholar
31. Ziebold, T. O., “The Electron Microanalyzer and Its Applications,” Lecture Notes, Massachusetts Institute of Technology, Summer Session, 1965, S-5.Google Scholar
32. Moreau, G. and Calais, D., “Determination du nume'ro atomique moyen d'un binaire homogene AB (solution solide ou compose1 de'fini)” [Determination of the Mean Atomic Number of a Homogeneous Binary AB (Solid Solution or Definite Composition)], J. Phys. Radium 25: 83A, 1964.Google Scholar
33. Philibert, J., “A Method for Calculating the Absorption Correction in Electron-Probe Microanalysis,” in: H. H. Pattee, V. E. Cosslett. and A. Engstrom (eds.), X-Ray Optks and X-Ray Microanalysis, Academic Press, New York, 1963, p. 379.Google Scholar
34. Theisen, R., Quantitative Electron Microprobe Analysis, Springer-Verlag, New York, 1965.Google Scholar
35. Heinrich, K. F. J. (to be published).Google Scholar
36. Duncumb, P. and Shields, P. K., “Effect of Critical Excitation Potential on the Absorption Correction,” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 284.Google Scholar
37. Heinrich, K. F. J., “X-Ray Absorption Uncertainly,” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 296.Google Scholar
38. Yakowitz, H. and Heinrich, K. F. J., “Quantitative Electron Probe Microanalysis: Absorption Correction Uncertainty,” Mikrockim. Acta, p. 182, 1968.Google Scholar
39. Duncumb, P. and Shields, P. K., “Calculation of Fluorescence Excited by Characteristic Radiation in the X-Ray Microanalyzer,” in: H. H. Pattee, V. E, Cosslett, and A. Engstrom (eds.), X-Ray Optics and X-Ray Microanalysis, Academic Press, New York, 1963, p. 329.Google Scholar
40. Reed, S. J. B., “Characteristic Fluorescence Corrections in Electron-Probe Microanalysis,” Brit. J. Appl. Phys. 16: 913, 1965.Google Scholar
41. Heinrich, K. F. J. and Yakowitz, H., “Quantitative Electron Probe Microanalysis: Fluorescence Correction Uncertainty,” Mikrockim. Acta, 1968 (in press).Google Scholar
42. Fink, R. F., Jopson, R. C., Mark, H., and Swift, C. D., “Atomic Fluorescence Yields,” Rev. Mod. Phys. 38: 513, 1966.Google Scholar
43. Green, M., “The Efficiency of Production of Characteristic X-Radiation,” Thesis, University of Cambridge, Great Britain, 1962.Google Scholar
44. Henoc, J., Maurice, F., and Kirianenko, A., “Microanalyseur a sonde eUectronique, e'tude de la correction de fluorescence due au spectre continu” (Electron Probe Microanalyzer: Study of the Correction for Fluorescence Due to the Continuous Spectrum), Coram. Energie At. (France), Rappt. CEA-R 2421, 1964.Google Scholar
45. Nelms, A. T., “Energy Loss and Range of Electrons and Positrons,” NBS Circ. 577, 1956; Suppl. NBS Circ. 577, 1958.Google Scholar
46. Bishop, H. E., “Calculations of Electron Penetration and X-Ray Production in a Solid Target,” in: R. Castaing, P. Deschamps, and J. Philibert (eds.), X-Ray Optics and Microanalysis, Hermann, Paris, 1966, p. 112.Google Scholar
47. Yakowitz, H., private communication.Google Scholar
48. Duncumb, P. and Reed, S. J. B., “Progress in the Calculation of Stopping Powei and Backscaltct Effects,” Quantitative Electron Probe Microanalysis. Natl. Bur. Std. Spec. Publ. 289, April 1968 (in press).Google Scholar