Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T15:31:08.205Z Has data issue: false hasContentIssue false

Anomalies in Measurement of Residual Stress by X-Ray Diffraction

Published online by Cambridge University Press:  06 March 2019

R. H. Marion
Affiliation:
Northwestern University Evanston, Illinois 60201
J. B. Cohen
Affiliation:
Northwestern University Evanston, Illinois 60201
Get access

Abstract

Residual stresses are expected to lead to a linear dependence of the interplanar spacing, d, on sin2ψ (where ψ is the sample tilt) and the stress can be obtained from the slope of this line, As a result of the linear dependence a two-tilt method is often employed to obtain the stress. However, when a specimen is subjected to extensive plastic deformation large deviations from a straight line can occur and a two-point method can lead to an erroneous stress determination. The results reported here show that: (1) this is more likely to occur in homogeneous materials than in multiphase materials (2) the oscillations follow closely the variation in peak intensity due to texture (3) the oscillations are caused by microstresses which are due to an "orientation" effect as suggested by Weidemann,

A simple, easy-to-use procedure has been developed and tested to correct the data and obtain the correct macrostress.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barrett, C. S. and Massalski, T. B., Structure of Metals, 3rd Edition, McGraw Hill, New York (1966).Google Scholar
2. Cullity, B, D., Elements of X-Ray Diffraction, Addison-Wesley Publ. Co., Reading, Mass. (1956).Google Scholar
3. Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures. John Wiley and Sons, Inc., New York (1954).Google Scholar
4. Macherauch, E., “X-Ray Stress Analysis”, Exp. Mech., 140-153 (1966).Google Scholar
5. Bollenrath, F., Hauk, V. and Ohly, W., “Mikroeigenspannungen in plastisch verformten Zugproben aus Eisen und Aluminium Legierungen”, Z. Metallkunde, 57, 464469 (1966).Google Scholar
6. Macherauch, E., “Lattice Strain Measurements on Deformed FCC Metals”, Adv. in X-Ray Analysis, 9, 103114 (1965).Google Scholar
7. Donachie, M. J. and Norton, J. T., “Lattice Strains and X-Ray Stress Measurement”, Trans. AIME, 221, 962967 (1961).Google Scholar
8. Macherauch, E. and Muller, P., “Gitterdehnungen und Eigenspannungen reinster und legierter Aluminiumproben naur Zugverformung”, Z. Metallkunde, 49, 324331 (1958).Google Scholar
9. Smith, S, L. and Wood, W. A., “Internal Stress Created by Plastic Flow in Mild Steels, and Stress-Strain Curves for the Atomic Lattice of Higher C Steels”, Proc, Royal Soc., A182, 404414 (1944).Google Scholar
10. Garrod, R. I. and Hawkes, G. A., “X-Ray Stress Analysis on Plastically Deformed Metals”, Brit, J. Appl. Phys., 14, 422428 (1963).Google Scholar
11. Hauk, V., “Rontgenographische Gitteronstantenmessungen on plastisch verformten Stahlproden”, Naturwiss, 40, 507508 (1953).Google Scholar
12. Hauk, V., “Zum gegenwartigen Stande dez Spannungsmessung mit Rontgenstrahlen”, Arch. Eisenhuttenwas., 25, 273278 (1954).Google Scholar
13. Bollenrath, F., Hauk, V. and Weidemann, W., “Zur Deutung der Gittereigenverformungen in plastisch verformten α-Eisen”, Archiv. ftir das Eisenhutt, 38, 793800 (1967).Google Scholar
14. Kolb, K. and Macherauch, E., “Die Eigertspannungsausbildung in verformten Stahlen”, Arch, fur das Eisenhlitt, 36, 927 (1965).Google Scholar
15. Shiraiwa, T. and Sakamoto, Y., “The X-Ray Stress Measurement of the Deformed Steel Having Preferred Orientation”, in Proc. 13th Japan Cong, on Materials Research, 25-32 (1970).Google Scholar
16. Christian, H., “Das Rontgenographische Spannungsmessversehren und Seine Anwendung bei der Bestinmung der Spannungszustande in Oberslachenbearbeiten und Warmbehandelten Proben”, Haerterie Tech. Mitt., 26, 180198 (1971).Google Scholar
17. Greenough, G. B., “Quantitative X-Ray Diffraction Observations on Strained Metal Aggregates”, Prog, in Metal Physics, 3, 176219 (1952).Google Scholar
18. Vasil'ev, D. M. and Smirnov, B. I., “Certain X-Ray Diffraction Methods of Investigating Cold Worked Metals”, Uspt Fiz. Hauk, 23, 503-558 (1961). Sov. Phys. Usp., 44, 226259 (1961) (English).Google Scholar
19. Faninger, G., “Lattice Strains in Deformed Cubic Metals”, J. Soc. Mat, Sci., Japan, 19, 4256 (1970).Google Scholar
20. Greenough, G. B., “Macroscopic Surface Stresses Produced by Plastic Deformation”, J. Iron and Steel Inst., 169, 235241 (1951).Google Scholar
21. Bollenrath, F., Hauk, V. and Oswald, E., “Röntegengraphische Spannungshessungen bei Überschreiten der Fliebgrenze an ‘ Zugstäben aus unlegierten Stahl”, VDI Z., 83, 129132 (1939).Google Scholar
22. Nishiharaand, T. Taira, S., “Effect of Free Surface on Yielding Resistance of Materials”, Mem, Fac, Eng.,, Kyoto Univ., 12, 90-118 (1950).Google Scholar
23. Leiber, C. and Macherauch, E., “Verfestigung und Eigenspannungen von Oberflachenschichtern Sugnerformten Kupferproben”, Z. Metallkunde, 52, 196203 (1961).Google Scholar
24. Hauk, V., “liber Eigenspannunger nach plastischer Zugverformung”, Z. Metallkunde, 46, 3338 (1955).Google Scholar
25. Wilson, D, V. and Korman, Y. A., “Work Hardening in a Steel Containing a Coarse Dispersion of Cementite Particles”, Acta. Met., 12, 617628 (1964).Google Scholar
26. Kolb, K. and Macherauch, E., “Zur Frage der Eindeutigkeit rontgenographischer Eigenspannungsmessungen an heterogen werkstoffen”, Naturwiss., 49, 604605 (1962).Google Scholar
27. Cullity, B. D., “Residual Stress After Plastic Elongation and Magnetic Loses in Silicon Steel”, Trans. AIME, 227, 356358 (1963).Google Scholar
28. Wood, W. A. and Dewsnap, H., “Atomic Displacements Associated with Elasticity in Deformed Metals”, J. Inst. Metals, 77, 6578 (1950).Google Scholar
29. Garrod, R. I., “Residual Lattice Strains in Mild Steels”, Nature, Lond., 165, 241242 (1950).Google Scholar
30. Greenough, G. B., “Residual Lattice Strains in Deformed Polycrystalline Metal Aggreagates”, Proc. Roy. Soc., A197, 556567 (1949).Google Scholar
31. Faninger, G., “Uber Vielkristallverfestigungskurven und Einkristalldaten von Aluminium, Kupfer, und Nickel”, Acta, Phys. Austr., 27, 122143 (1968).Google Scholar
32. Taira, S., Hayashi, K. and Urakawa, N., “X-Ray Measurement and Analysis of Residual Stress Induced in Polycrystalline Aluminium by Uniaxial Plastic Deformation”, J. Japan Institute of Metals, 35, 189204 (1971).Google Scholar
33. Weidemann, W., Ph.D. Thesis, Technische Hochschule, Aachen, Germany (1966).Google Scholar
34. Wood, W. A., “The Behavior of the Lattice of Polycrystalline Iron in Tension”, Proc. Royal Soc., A192, 218231 (1948).Google Scholar
35. Keh, A. S., “Work Hardening and Deformation Sub-Structure in Iron Single Crystals Deformed in Tension at 298°K”, Phil. Mag., 12, 930 (1965).Google Scholar
36. Calnan, E, A. and Clews, C. J. B., “The Development of Deformation Textures in Metals-Part II-Body Centered Cubic Materials”, Phil. Mag., 42, 616635 (1951).Google Scholar
37. Swaroop, B. and Tangri, K., “X-Ray Studies on Residual Lattice Strains in Deformed Nickel”, Trans. AIME, 245, 6166 (1969).Google Scholar
38. Swaroop, B. and Tangri, K., “Effect of Mode of Unloading on the Residual Lattice Strains”, Brit. J. Appl. Phys., 2, 10451047 (1969).Google Scholar
39. Wasserman, G. and Grewen, J., Texturen Metallischer Werkstoffe. 2nd. Edition, Springer, Berlin (1962).Google Scholar
40. Mitchell, T. E. and Thornton, P. R., “The Work Hardening Characteristics of Cu and α-Brass Single Crystals Between 4.2° and 500° K”, Phil. Mag. 8, 11271159 (1963).Google Scholar
41. Calnan, E. A. and Williams, B. E., “Observations on the Tension of Al,”, Trans. AIME, 194, 743744 (1952).Google Scholar
42. Dillamore, I, L. and Roberts, W. T., “Texture”, Mat. Rev., 10, 271380 (1965).Google Scholar
43. Calnan, E. A. and Clews, C. J. B., “Deformation Textures in Face Centered Cubic Materials”, Phil. Mag., 41, 10851100 (1950).Google Scholar
44. Rothman, R., Ph.D. Thesis, Northwestern Univ., Evanston, 111. (1969).Google Scholar
45. Mikkola, D. E. and Cohen, J. B., “The Substructure of Cu3Au after Tensile Deformation and Shock Loading”, Acta, Met., 14, 105122 (1966).Google Scholar
46. Mikkola, D, E. and Cohen, J. B., Local Atomic Arrangements Studied by X-Ray Diffraction, Chap. 9, edited by J. B. Cohen and Hilliard, J. E., (Gordon and Breach, Hew York) (1965).Google Scholar
47. Marion, R. H., Ph.D. Thesis, Northwestern Univ., Evanston, Illinois (1972).Google Scholar
48. Schulz, L. G., “A Direct Method of Determining Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter X-Ray Spectrometer”, J. Appl. Phys., 20, 10301033 (1949).Google Scholar
49. Field, M. and Merchant, M. E., “Reflection Method of Determining Preferred Orientation on the Geiger Counter Spectrometer”, J. Appl, Phys., 20, 741745 (1949).Google Scholar
50. Bragg, R. H. and Packer, C. M., “Quantitative Determination of Preferred Orientation”, J. Appl. Phys., 35, 13221328 (1964).Google Scholar
51. Bragg, R. H. and Packer, C, M., “Effect of Absorption and Incoherent Scattering on the X-Ray Line Profiles”, Rev, Sci. Inst., 34, 12021207 (1963).Google Scholar
52. Batterman, B. W., Chipman, D. R., and DeMarco, J. J., “Absolute Measurements of the Atomic Scattering Factors of Iron, Copper, and Aluminium”, Phys. Rev., 122, 6874 (1961).Google Scholar
53. McGregor, W. J., Tegart, Elements of Mechanical Metallurgy, Macmillan, New York (1966).Google Scholar
54. Reuss, A., “Calculation of Flow Limits of Mixed Crystals on Basis of Plasticity of Single Crystals”, Z. Angew. Math. Mech., 9, 4958 (1929).Google Scholar
55. Voigt, W., Lehrbuch der Kristallphysik, Teubner, Leipzig/Berlin, (1928).Google Scholar
56. Flinn, P. A., McManus, G. M. and Rayne, J. A., “Elastic Constants of Ordered and Disordered Cu3Au from 42° - 300° K”, J. Phys. Chem. Solids, 15, 189195 (1960).Google Scholar
57. Baldwin, W. M. Jr., “Residual Stress in Metals”, Proc. ASTM, 49, 539583 (1949).Google Scholar
58. Pearson, W. B., Lattice Spacings and Structures of Metals and Alloys. Pergamon Press, N. Y., (1958).Google Scholar
59. Kear, B. H., “Dislocation Configurations and Work Hardening in Cu^Au Crystals”, Acta. Met. 12, 555569 (1964).Google Scholar
60. Kear, B. H. and Wilsdorf, H. G. F., “Dislocation Configurations in Plastically Deformed Polycrystalline Cu-Au Alloys”, Trans. AIME, 224, 382386 (1962).Google Scholar
61. Wilson, D. V., “Reversible Work Hardening in Alloys of Cubic Metals”, Acta, Met., 13, 807814 (1965).Google Scholar
62. Hanabusa, T. and Fujiwara, H., X-Ray Study on Strength and Deformation of Metals, X-Ray Study on Tensile Deformation of Steels Containing Cementite Particles”, 33-41 (Proceedings of the Seminar on X-Ray Study on Strength and Deformation of Metals, August 23-24, 1971, Tokyo, Japan). published by the Society of Materials Science, Japan.Google Scholar
63.Residual Stress Measurement by X -Ray Diffraction - SAE J784a, (Society of Automotive Engineers, Inc., N. Y., N, Y.) (1971).Google Scholar
64.Internal Reports of the X-ray Division of SAE Fatigue Design and Evaluation Committee.Google Scholar