Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-04T23:30:43.803Z Has data issue: false hasContentIssue false

Analysis of Refractory Metals and WC-Based Hard Metals by Energy Dispersive X-Ray Fluorescence

Published online by Cambridge University Press:  06 March 2019

Wolfhard Wegscheider
Affiliation:
Institute for Analytical Chemistry, Micro- and Radiochemistry, Technical University Graz, A-8010 Graz, Austria
Kurt Müller
Affiliation:
Institute for Analytical Chemistry, Micro- and Radiochemistry, Technical University Graz, A-8010 Graz, Austria
Hugo M. Ortner
Affiliation:
Metallwerk Plansee AG, A-6600 Reutte, Austria
Get access

Abstract

The potential of energy-dispersive X-ray fluorescence spectrometry for analysis of refractory metals and WC-based hard metals is investigated. Both, photon excitation by filtered tube radiation and by the characteristic, lines of a secondary target are employed. Both excitation systems give good results. If the counting times are adjusted to account for the lower sensitivity of energy dispersive as opposed to wavelength dispersive X-ray spectrometry the detection limit and precision data are comparable. The multielement analyses of interest in these applications that comprise an energy range of 5 keV or more are better handled by direct excitation with filtered tube radiations than either by secondary target excitation or by wavelength dispersive X-ray spectrometry.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ortner, H.M. and Lassner, E., Binsatz moderner instrumenteller Methoden zur Spurenanalyse in hochschmelzenden Metallen, Mikrochim. Acta Suppl. 7:41 (1977).Google Scholar
2. Puschel, R. und Lassner, E., Anwendung der RFA in der Spurenanalyse, III. Bestimmung von Fremdmetallspuren in hoclireinem Molybdan und Wolfram oiit Hilfe der RFA nach Anreicherung durch Fallung mit PAH, J. Less-Common Metals 17:3l3 (1969).Google Scholar
3. Ortner, H.M., Lassner, E. and Hertroys, P., Experiences with Automated X-Ray Fluorescence Spectrometry in the Analysis of Refractory Metals, X-Ray Spectrom, 4:2(1975).Google Scholar
4. Wurzinger, H. and Miiller, K., Bestimmung von Spuren Titan und Zirkonium in Molybdan und Wolfram bzw. deren Sauerstoffverbindungen durch Rontgenfluoreszenz-Spektralanalyse (RFA), Fresenius Z. Anal. Chem., 284:101 (1977).Google Scholar
5. Currie, L.A., Detection and Quantitation in X-Ray Fluorescence Spectrometry, in “X-Ray Fluorescence Analysis of Environmental Samples”, Dsubay, T.G., ed., Ann Arbor Publ., Ann Arbor (1977).Google Scholar
6. Shen, R.B., Russ, J.C. and Stroeve, W., Modelling Intensity and Concentration in Energy Dispersive X-Ray Fluorescence, in “Adv. in X-ray Anal.”, Vol. 22, ed., Plenum, New York (1979).Google Scholar