Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T14:57:07.119Z Has data issue: false hasContentIssue false

An Advanced Technique for High Temperature X-Ray Elastic Constant and Stress Investigations

Published online by Cambridge University Press:  06 March 2019

Chun Liu
Affiliation:
LM3, CNRS URA 1219, ENSAM, 151 Bd de l'Hôpital 75013 Paris, France
Jean-Lou Lebrun
Affiliation:
LM3, CNRS URA 1219, ENSAM, 151 Bd de l'Hôpital 75013 Paris, France
François Sibieude
Affiliation:
ISGMP, CNRS, B. P. 5, Odeillo, 66120 Font-Romeu, France
Get access

Abstract

A high temperature in situ X-Tay diffraction (HTXRD) instrument was devised for residual stress (RS) and X-ray elastic constant (XECs) investigations. The aim was to gain a better understanding of the stresses developed during high temperature oxidation, which is essential for the lifetime improvement of refractory alloys. The investigators use sin2ψ method to survey the stress evolution during oxidation in both the scale and the substrate, and differential method to determine the XECs that relate the measured/measurable deformation to the stress state of the materials studied. The stresses on the Ni/NiO system are measured in situ. The XECs are determined on XC75 steel samples. This paper presents the theories of stresses and XECs determined by HTXRD and briefly discusses the experimental results.

Type
VIII. High-Temperature and Non-Ambient Applications of XRD
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Norin, A., Oxid, Met., 9, (1975), 259.Google Scholar
2. Zhao, J. G. and Huntz, A. M., J. Mat. Sci, 19, (1984), 3166.Google Scholar
3. Nix, W. D” Metall. Trans., 20A, (1989), 2217.Google Scholar
4. Cox, L. C., Residual Stress In Design. Process And Materials Selection (1987), ASM, p.10.Google Scholar
5. Lu, J., Proc. 5th Int. Cong. Exp. Mechanics, (1984), The Permenant Committee for Stress Analysis, 678.Google Scholar
6. Lorentzen, T., Leffers, H. and Jensen, D. J., Proc. Int. Conf. Res. Stresses (ICRS-2), November, 1988, Nancy, France, Ed. Beck, G., Denis, S. and Simon, A., Elsevier Applied Science, London, (1988), 191.Google Scholar
7. Armstrong, J. H., Rawal, S. P. and Misra, M. S., Mater. Sci. Eng., A126. (1990), 119.Google Scholar
8. Coddet, C., Chretien, J. F. and Béranger, G., CR. Acad. Sci., 282C. (1976), 815.Google Scholar
9. Zaouali, M., These de Doctorat. ENSAM, Paris, France, (1990).Google Scholar
10. Zaouali, M. and Lebrun, J. L., Proc. 9th Int. Cong. Exp. Mechanics. The Permenant Committee for Stress Analysis, Copenhagen, Denmark, (1990), 1281.Google Scholar
11. Arima, J. and Iwai, Y., J. Jap. Soc. Mat., 32(354), (1983), 277.Google Scholar
12. Liu, C., Huntz, A. M., Lebrun, J. L. and Gérard, N., Mater. Tech., 7/8, (1989), 17.Google Scholar
13. Liu, C., Huntz, A. M. and Lebrun, J. L., Proc. Int. Symp. High Temp. Corros. Protec., Shenyang, China, June, 1990, ed. H. Guan, W. Wu, J. Shen and T. Li, Liaoyang Science and Technology Publishing, (1991), p.7.Google Scholar
14. Liu, C., These de Doctorat. ENSAM, Paris, France, (1991).Google Scholar
15. Liu, C., Huntz, A. M. and Lebrun, J. L., Proc. Int. Conf. Res. Stresses (ICRS-3). Vol.2, Tokushima, Japan, July, 1991, ed. H. Fujiwara, T. Abe and K. Tanaka, Elsevier, London, (1992), p.963.Google Scholar
16. Liu, C., Lebrun, J. L., Huntz, A. M. and Sibieude F” to be published in Z. Metallkunde, Jan. 1993.Google Scholar
17. Foex, M. and Traverse, J. P., Rev. Int. Htes Tempér, et Réfract., 3, (1966), 429.Google Scholar
18. Lartigue, J. F. and Sibieude, F., Rev. Int. Htes Temper, et Refract., 22(9), (1985), 71.Google Scholar
19. Castex, L., Lebrun, J. L., Maeder, G. and Sprauel, J. M., Publication Scientifique et Technique. No. 22, ENSAM, Paris, France, (1981).Google Scholar
20. Maeder, G., Lebrun, J. L. and Sprauel, J. M., in Physique et Mécanique de. la Mise en Forme des Métaux. Ed. Moussy, R. and Franciosi, P., Presses du CNRS, Ecole d'été du CNRS, Ile d'Oléron, France, (1988), 135.Google Scholar
21. Maeder, G. and Lebrun, J. L., in Méthodes Usuelles de Caractérisation des Surfaces. Ed. D. David and Caplain, R., Eyrolles, (1988), 248.Google Scholar
22. Atkinson, H. V., Oxid. Met., 28(5/6), (1987), 353.Google Scholar
23. Harris, A. W. and Atkinson, A., Oxid. Met., 34(3/4), (1990), 229.Google Scholar
24. Aubry, A., Thèse de Doctorat d'lngénieur. Université de Technologie de Compiègne, Compiègne, France, (1985).Google Scholar
25. Aubry, A., Armanet, F., Beranger, G., Lebrun, J. L. and Maeder, G., Acta Metall., 1(36), (1988), 2779.Google Scholar
26. Courty, C., Thèse. de. Doctorat, University de Technologic de Compiègne, Compiègne, France, (1988).Google Scholar
27. Courty, C., Lebrun, J. L., Armanet, F., Béranger, G. and Fayoux, C, Proc. Int. Conf. Res. Stresses fICRS-2l November, 1988, Nancy, France, Ed. Beck, G., Denis, S. and Simon, A., Elsevier Applied Science, London, (1988), 360.Google Scholar
28. Bernstein, H. L., Met. Trans., A18, (1987), 975.Google Scholar
29. Barnes, J. J., Goedjen, J. G. and Shores, D. A., Oxid. Met. 32 (5/6), (1989), 449.Google Scholar
30. Touati, A., Thèse de Doctoral, Université de Technologie de Compiègne, Compiègne, France, (1991).Google Scholar
31. Touati, A., Roelandt, J. M., Armanet, F. and Beranger, G., Proc. Int. Conf. Adv. Mat.. Strasbourg, France, 1991, Elsevier North Holland, (1992), p.233.Google Scholar
32. Schlaak, U., Hirsch, T. and Mayr, P., Residual Stresses And Technology. Proc. Int. Conf. Res. Stresses (ICRS-11 Ed. Macherauch, E. and Hauk, V., DGM Informationsgesellschaft, Oberursel, Garmisch, FGR, (1987), 663.Google Scholar
33. Schlaak, U., Hirsch, T. and Mayr, P., Proc. Int. Conf. Res. Stresses (ICRS-2). November, 1988, Nancy, France, Ed. Beck. G., Denis, S. and Simon, A., Elsevier Applied Science, London, (1988), 669.Google Scholar
34. Liu, C., Huntz, A. M., and Lebrun, J. L., Mat. Sci. Eng. A160, (1993), 113.Google Scholar
35. Huntz, A. M., Liu, C., and Lebrun, J. L., Proc. 2nd- Int. Symp. High Temp. Corns. Protec. May, 1992, Les Embiez, France.Google Scholar
36. Huntz, A. M., Liu, C., Kornmeier, M. and Lebrun, J. L., Proc. Int. Conf. Adv. Corros. Protec. June 1992, University of Manchester Institute of Science and Technology (UMIST), Manchester, UK.Google Scholar
37. Courty, C., Lebrun, J. L., Armanet, F. and Beranger, G., Mem. Etudes Sci. Revue MitalL, 39(5), (1989), 309.Google Scholar
38. Pivin, J. C., Morvan, J., Mairey, D. and Mignot, J., Scripta Metall., 17, (1983), 179.Google Scholar
39. Jayaraman, N. and Verrilli, M. J., J. Mater. Sci., 24, (1989), 1327.Google Scholar
40. Fitch, A. N., Catlow, C. R. A. and Atkinson, A., J. Mater. Sci., 26, (1991), 2300.Google Scholar
41. Béranger, G., Huntz, A. M. and Pieraggi, B., in Corrosion des Matérlaux à Haute Température. Ed. Béranger, G., Colson, J, C, and Dabosi, F., Les Editions de physique, Piau-Engaly, (1985), 227.Google Scholar
42. Huntz, A. M., Mat. Sci. Technoi, 4, (1988). 1079.Google Scholar
43. Oxx, G. W., Prod. Eng., 29, (1953), 61.Google Scholar
44. Tylecote, R. F., J. Iron Steel Inst., 196, (1960), 135.Google Scholar
45. Taylor, D., British Ceram. Trans. J., 83, (1984), 5.Google Scholar
46. Homma, T., Boshoku Gijutsu, 25, (1976), 251.Google Scholar
47. Touzelin, B., Rev. Int. Htes. Temp, et Réfract., 15, (1978), 33.Google Scholar
48. Suh, I.-K., Ohta, H. and Waseda, Y., J. Mater. Sci., 23, (1988), 757.Google Scholar