Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:21:44.706Z Has data issue: false hasContentIssue false

Amorphous Solids, Small Particles and Thin Surface Films

Published online by Cambridge University Press:  06 March 2019

F. Schossberger*
Affiliation:
Armour Research Foundation, Chicago, Illinois
Get access

Abstract

A comprehensive chart is preserit of the X-ray diffraction effects of gas-and Uquid-like armorphous substances, small particle-size materials, mixtures of amorphous and crystalline compounds, sheetlike crystals, and fibrous materials.

The relationship between the X-ray diagrams and chemical preparations as shown by typical examples from the field of the manufacture of active catalysts cadmium sulfide semiconductors, pour point-depressed lubricants, electroless nickel platings and metal-filled cellulose fibers.

The investigation of thin surface layers formed by chemical reactions required the combination of electron and X-ray diffraction techniques. The usefulness of this combination of methods is demonstrated by a study of black stain formation on cold rolled annealed steel. By identifying the materials in the stain and determining the sequence in which they formed a reaction mechanism between steel surface and annealing-gas can be postulated.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

1. Fricke, R. Inorganic Chemistry (a review with 178 references). Naturforsch, Med, 28, 1949. Dieterich Sche Verlagsbhdlg, Wiesbaden.Google Scholar
2. Guinier, A. and Fournet, G. Small Angle Scattering of X-Rays, p. 187, 1955. John Wiley and Sons, New York.Google Scholar
3. Glocker, R. Materialprufung mit Rontgen-Strahlen, p. 368, 1949. Springer Verlag, Berlin.Google Scholar
4. Speiser, H. S., Rooksby, H. P., Wilson, A. J. C., X-Ray Diffraction, p. 446, 1955. Institute of Physics, London.Google Scholar
5. Goldenstein, A. W.,, Rostoker, W., Schossberger, F., and Gutzeit, G. J. Electrochern. Soc. 104, 104, 1957,Google Scholar
6. Sproull, W. T. X-Rays in Practice, p. 438, 1956, McGraw-Hill Book Co., New York.Google Scholar
7. Riley, D. P. Brit. Coal Utilization Res. Assoc. Conf., London, p. 232, 1944.Google Scholar
8. Walkex, C. B. and Guinier, A. Compt. rend. 234, 2379, 1952.Google Scholar
9. Glocker, R. Ibid., p. 195.Google Scholar
10. Guinier, A. and Fournet, G. Ibid., pp. 202, 195,Google Scholar
11. Robinson, R. J. and Schossberger, F. J. Electrochem. Soc. 102, 685, 1955.Google Scholar
12. Klug, H. P. and Alexander, L. E. X-Ray Diffraction Procedures, p. 513, 1954. John Wiley and Sons, New York.Google Scholar
13. Gavlin, G., Swire, E., and Jones, S. P. Ind. Eng, Cliem. 45, 2327, 1953.Google Scholar
14. Glocker, R. Ibid., pp. 346-68.Google Scholar
15. Kratky, O. and Porod, G. Physik die Hochpolymeren, Vol. 3, p. 192, 1955. Springer Verlag, Berlin.Google Scholar
16. Kratky, O. Ibid., p. 288.Google Scholar
17. Frey-Wyssling, A. Protoplasma 27, 372, 1937.Google Scholar
18. Raether, H. Handbuch der physik, Vol. 23, p. 443, 1957. Springer Verlag, Berlin.Google Scholar
19. Pinsker, Z. G. Electron Diffraction Butterworths, 1953, Scient. Publ., London.Google Scholar
20. Schossberger, F., Hattori, K., and Marver, H. Iron and Steel Eng. 35, 74, 1957.Google Scholar