Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T14:52:21.683Z Has data issue: false hasContentIssue false

X-Ray DCD and EPMA Measurements of Al Concentration in Epitaxial AlxGa1-xAs/GaAs Layers

Published online by Cambridge University Press:  06 March 2019

D.A. Macquistan
Affiliation:
Advanced Technology Laboratory, Bell-Northern Research Ltd. Ottawa, Canada K1Y-4H7
I.C. Bassignana
Affiliation:
Advanced Technology Laboratory, Bell-Northern Research Ltd. Ottawa, Canada K1Y-4H7
A.J. SpringThorpe
Affiliation:
Advanced Technology Laboratory, Bell-Northern Research Ltd. Ottawa, Canada K1Y-4H7
R. Packwood
Affiliation:
Metals Technology Laboratories, CANMET Energy Mines and Resources Canada 568 Booth St, Ottawa Ontario, Canada K1A-0G1
V. Moore
Affiliation:
Metals Technology Laboratories, CANMET Energy Mines and Resources Canada 568 Booth St, Ottawa Ontario, Canada K1A-0G1
Get access

Abstract

Double Crystal X-Ray Diffraction (DCD) is often used to determine the Al content of AlxGa1-xAs/GaAs epitaxial layers. Assessing composition from a measurement of mismatch is problematic because it invokes a number of assumptions. This study bypasses these difficulties by comparing the measurement of mismatch directly with Al composition measurements made by electronprobe microanalysis. A study of coherent epitaxial AlxGa1-xAs layers showed that mismatch varies linearly with composition. The equation Al (x) = |ΔΘ| / 368 summarizes the relationship over the coherent range, where |ΔΘ| is measured in arc seconds.

Type
V. X-Ray Characterization of Thin Films
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bartels, J., J.Vac. Sci. Technol. B. 1(2): 338(1983)Google Scholar
2. Bassignana, L. C. and Tan, C. C., J.Appl. Crysr. 22: 269 (1989)Google Scholar
3. Halliwell, M.A.G., Lyons, M. H., Tanner, B. K. and Ilczyszyn, P., J. Cryst. Grwth., 65:672(1983)Google Scholar
4. Segmuller, A., Krishna, P. and Esaki, L. J. Appl. Cryst. 10: 1 (1977)Google Scholar
5.JCPDS Powder Diffraction File, JCPDS International Centre for Diffraction Data, Swarthmore, PA, USA. (1984)Google Scholar
6. Bassignana, I. C., Acquistan, D. A. M. and Spring, A. J. Thorpe, Inst. Phys. Conf. Ser. No.120 Chap. 5 : 247(1992)Google Scholar
7. Keuch, T. F., Wolford, D. J., Potemski, R., Bradley, J. A., Kelleher, K. H., Yan, D., Farrell, J. P., Lesser, P. M. S. and Pollak, F. H., Appl. Phys. Lett. 51(7): 505(1987)Google Scholar
8. Xiong, F., Tombrello, T. A., Chen, H. Z., Morkoc, H., and Yariv, A., J.Vac. Sci. Technol. B 6(2): 758(1988)Google Scholar
9. Lambert, B., Caulet, J., Regreny, A., Baudet, M., Deveaud, B. and A.Chaumette, Semicond. Sci. Technol. 8 : 491(1987)Google Scholar
10. Leszczynski, M., Micovic, M., Mendonca, C. A. C., Ciepielewska, A. and Ciepielewski, P. Cryst. Res. Technol., 27(1): 7(1992)Google Scholar
11. Goorsky, M. S., Kuech, T. F., Tishler, M. A., and Potemski, R. M., Appl. Phys. Lett. 59(18): 2269(1991)Google Scholar
12. Tanner, B. K., TurnbulI, A. G., Stanley, C. R., Kean, A. H. and McElhinney, M., Appl. Phys. Lett. 59(18): 2272(1991)Google Scholar
13. Chang, K. H., Lee, C. P., Wu, J. S., Liu, D. G., Liou, D. C., Wang, M. H., Chen, L. J. and Marais, M. A., J.Appl. Phys. 70(9) : 4877(1991)Google Scholar
14. Packwood, R., A Comprehensive Theory of Electronprobe Microanalysis, in: “The Electronprobe Microanalyser”, Heinrich and Newbury, eds. Plenum Press, New York, (1991).Google Scholar
15. Matthews, J. W. and Blakeslee, A. E., J.Cryst Grwth. 27: 118(1974)Google Scholar
16. Bassignana, I. C. and Macquistan, D. A. and Clark, D. A., Advances in X-Ray Analysis. 34: 507 (1991)Google Scholar
17. Fewster, P. F. and Curling, C. J., J.Appl. Phys., 62 : 4154(1987)Google Scholar
18. Wie, C. R., J. Appl. Phys. 66(2): 985(1989)Google Scholar
19. Auvary, P., Baudet, M. and Regreny, A. J. Cryst. Grwth., 95 : 288(1989)Google Scholar
20. Ayers, J. E., Ghandhi, S. K. and Schowalter, L. J. J. Cryst. Grwth., 113: 430 (1991)Google Scholar
21. Packwood, R. and Remond, G. Scanning Microscopy, (1992) in press.Google Scholar
22.In a separate study of AlGaAs layers grown on doped GaAs substrates (Si doped, n-type) it has been observed that the EPMA results can vary by as much as 30% from those grown on semi-insulating substrates as a function of substrate conductivity. For consistent calibration studies only epitaxial layers grown on similar substrates can be compared. (R. Packwood, private communication)Google Scholar
23. Lyon, T. J., Woodall, J. M., Goorsky, M. S. and Kichner, P. D. Appl. Phys. Lett. 56(11): 1040(1990)Google Scholar
24. Jenkins, R., Schreiner, W. N. and P. Dismore, accepted for publication, in: Advances in X-Rav Analysis, 35, (1991)Google Scholar
25. Houghton, D. C., Gibbings, C. J., Tuppen, C. G., Lyons, M. H. and Halliwell, M. A. G., Appl. Phys. Lett. 56(5):460(1990).Google Scholar