Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T12:14:01.261Z Has data issue: false hasContentIssue false

Spectra of X-Ray Tubes with Transmission Anodes for Fundamental Parameter Analysis

Published online by Cambridge University Press:  06 March 2019

Horst Ebel
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraße 8-10 A 1040 Wien, Austria
Maria F. Ebel
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraße 8-10 A 1040 Wien, Austria
Christian Pöhn
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraße 8-10 A 1040 Wien, Austria
Bernd Schoßmann
Affiliation:
Technische Universität Wien Institut für Angewandte und Technische Physik Wiedner Hauptstraße 8-10 A 1040 Wien, Austria
Get access

Abstract

The approach for the description of the emission of white and characteristic x-rays from standard x-ray tubes is modified for an application to transmission anodes. This modification is based on the assumption of a negligible penetration depth of the electrons in comparison to the thickness of the anode. The results of our considerations are presented for Cu, Mo and W anodes with two different thicknesses. For comparison, the spectra of standard anodes which have been operated with identically high voltages and anode currents are given. A typical feature of transmission anodes is their spectral hardening of the energy distribution of emitted photons. A further interesting detail is the development of narrow band excitation anodes as can be seen from the results for Mo. With anode thicknesses of approximately 200 μm and a high voltage of 30 kv the spectral distribution is restricted to an energy ranging from 15 to 20 keV.

Type
III. XRS Techniques and Instrumentation
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pella, P.A., Feng, L. Y. and Small, J. A., X-Ray Spectrometry 14, 125 (1985)Google Scholar
2 Ebel, H., Wiederschwinger, H., Wernisch, J. and Pella, P., Adv. X-Ray Anal. 35 (1992) 721 Google Scholar
3 Smith, D.G.W., Gold, C. M. and Tomlinson, D. A., X-Ray Spectrometry 4, 149 (1975)Google Scholar
4 Love, G. and Scott, V. D., J.Phys.D:Appl.Phys. 11, 1369 (1978), J.Phys.D:Appl.Phys. 13, 995 (1980), Scanning 4, 111 (1981)Google Scholar
5 Bloch, F., Z.Phys. 81, 363 (1933)Google Scholar
6 Hunger, H.J. and Küchler, L., Phys.Status Solidi (a)56, K45 (1979)Google Scholar
7 McMaster, W.H., del Grande, N. K., Mallett, J. H. and Hubbell, J. H., Compilation of X-Ray Cross-Sections, UCRL-50174, Sect.II, Rev.l. Lawrence Radiation Laboratory, University of California, Livermore, CA (1969)Google Scholar
8 Mott, N.F. and Massey, H.S.W., The Theory of Atomic Collisions, Oxford University Press, London (1949)Google Scholar
9 August, H.J., Razka, R. and Wernisch, J., Scanning 10, 107 (1988)Google Scholar
10 Pöhn, Ch., Wernisch, J. and Hanke, W., X-Ray Spectrometry 14, 120 (1985)Google Scholar