Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T03:44:39.077Z Has data issue: false hasContentIssue false

Small-Angle X-Ray Scattering by Metastable Liquid Immiscibility in Glass

Published online by Cambridge University Press:  06 March 2019

John A. Williams
Affiliation:
Tem-Pres Research, Inc. State College, Pennsylvania
Bert Phillips
Affiliation:
Tem-Pres Research, Inc. State College, Pennsylvania
Guy E. Rindone
Affiliation:
Pennsylvania State University University Park, Pennsylvania
Herbert A. McKinstry
Affiliation:
Pennsylvania State University University Park, Pennsylvania
Get access

Abstract

Small-angle X-ray scattering measurements were made on samples of CaO—MgO—SiO2 as CaO-MgO-SiO2 glass in which met astable amorphous phase separation had been induced by heat treatment. Glass rods drawn from a melt of composition 30.5% CaO, 8.0% MgO, 61.5% SiO2 (by weight) at 1400°C were heat treated for 1, 2, 10, and 15hr at 825°C. X-ray scattering intensities of heat-treated and non-heat-treated samples were measured using an apparatus based on Kratky collimation geometry and equipped with a pulse height analyzer. Particle sizes were calculated from the radii of gyration which were determined from plots of log intensity vs, θ2, according to the method of Guinier. The data show a growth with time of the dispersed spheres from 350 to 1880 Å in diameter and correspond to the growth rate for diffusion-controlled growth of a sphere. Electron micrographs of identical samples prepared concurrently are presented. Inhomogeneity sizes obtained by the two methods are in very good agreement. Results obtained using the Kratky system in conjunction with a pulse height analyzer are compared with those obtained when a slit collimation system and balanced filter monochronmtization were used to study the same sample.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guinier, A. and Fournet, G., Small Angle Scattering of X-Rays, John Wiley & Sons, Inc., New York, 1955.Google Scholar
2. Goldmann, J. B., Small Angle X-Ray Scattering: an Annotated Bibliography, Nat'l. Aeron. Space Admin, Doc. N63-21, 806, 73 pp., 1962, 163 references. Can also be found in Sci. Tech. Aerospace Rept. 1(22):1860, 1963.Google Scholar
3. Warren, B. E., “X-Ray Determination of the Structure of Liquids and Glass,” J. Appl. Phys. 8: 645654, 1937.Google Scholar
4. Hoffman, L. C. and Statton, W. O., “Structure in Vitreous Silicates as Shown by Low-Angle Scattering of X-Rays,” Nature 176(4481) :561562, 1955.Google Scholar
5. Cartz, L., “Low-Angle X-Ray Observations of Glass,” Nature 180(4595): 1115-1116, 1957.Google Scholar
6. Brumberger, H. and Debye, P., ‘Low-Angle Scattering of X-Rays by Glasses,” J. Phys. Chem. 61:16231624, 1957.Google Scholar
7. Debye, P. and Bueche, A. M., “Scattering by an Inhomogeneous Solid,” J. Appl. Phys. 20: 518525, 1949.Google Scholar
8. Debye, P., Anderson, H. R. Jr., and Brumberger, H., “Scattering by an Inhomogeneous Solid. II, Thé Correlation Function and Its Application,” J. Appl. Phys. 28(6):679683, 1957.Google Scholar
9. Statton, W. O. and Hoffman, L. C., “Structure in Vitreous Silicate Fibers as Shown by Small-Angle Scattering of X-Rays,” J. Appl. Phys. 31(2):404409, 1960.Google Scholar
10. Porai-Koshits, E. A. and Andreyev, N. S., “Low Angle X-Ray Scattering by Sodium Borosilicate Glasses,” J. Soc. Glass Technol. 43 :235T-261T, 1959.Google Scholar
11. Levin, D. I., Zhdanov, S. P., and Porai-Koshits, E. A., “On the Structure of Sodium Borosilicate Glasses in Connection with the Opalescence Phenomenon,” iso. Akad, Nauk SSSR, Old. Khim. Nauk (Bull. Acad, Sci. USSR;Div. Chem. Set.) No. 1-3:31-39, 197-207, 395-402, 1955.Google Scholar
12. Porai-Koshits, E. A. and Filipovich, V. N., “The Babinet Principle and X-Ray Scattering at Small Angles by Porous Glasses,” Izv. Akad. Nauk SSSR, Old. Khim. Nauk (Bull. Acad. Sci. USSR; Div. Chem. Sci.) No. 1:21-30, 1955.Google Scholar
13. Andreyev, N. S., Aver'yanov, V. I., and Voishvillo, N. A., “Structural Interpretation of the Anomolous Scattering of Visible Light in Sodium Borasilicate Glasses,” Sov. Phys.-Solid State (English Transi.) 2:916924, 1960.Google Scholar
14. Wcinberg, D. L., “Surface Effects in Small-Angle X-Ray Scattering,” J. Appl. Phys. 33(3): 10121013, 1962.Google Scholar
15. Hosemann, R.. and Bagchi, S. N., Direct Analysis of Diffraction by Matter, North-Holland Publishing Co., Amsterdam, 1962, Chapters 16-18.Google Scholar
16. Hosemann, R., “Die Erforschung der Stvuktur hochmolckularer und kolloider Stoffe niittels Kleinwinkelstreuung” (“Investigation of the Structure of High-Molecular and Colloidal Materials by Small Angle Scattering“), Ergeb. Exact. Naturw. 24: 142221, 1951.Google Scholar
17. Porod, G., “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systernen-1” (“The X-Ray Small Angle Scattering from Densely Packed Colloidal Systems. I”), Kolloid-Z. 124: 33114, 1951.Google Scholar
18. Porod, G., “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II” Kolloid-Z. 125: 5157, 109-122, 1952.Google Scholar
19. Becman, W. W., Kaesberg, P., Anderegg, J. W., and Webb, M. B., “Size of Particles and Lattice Defects,” Handbuck der Physik, Vol. 32, S. Flugge (ed.), Springer-Verlag, Berlin, 1957, pp. 321442; part A “Size and Shape of Particles from Small Angle X-Ray Scattering,” pp. 321-389.Google Scholar
20.Bibliography at end of reference 1, pp. 217-259 (569 references).Google Scholar
21. Guinier, A., X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Freeman, San Francisco, 1963, Chapter 10.Google Scholar
22. Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures, John Wiley & Sons, Inc., New York, 1954, Chapter 12.Google Scholar
23. Williams, J. A., Phillips, B., McKinstry, H. A., and Rindone, G. E., Small Angle X-Ray Scattering: Methods and Considerations, Office of Naval Research Tech. Report No. 3, Contract No. NONR 4089(00), Tem-Pres Research, Inc., June 1964.Google Scholar
24. Kratky, O., “Neues Verfahrcn zur Hemelkmg von blendenstreuungsfreien Rontgen-Klein-winkelaufnahmen” (“A New Method for Making Small Angle X-Ray Scattering Diagrams Free from Parasitic Scattering“), Z. Elektrochem. 58(1): 4953, 1954.Google Scholar
25. Kratky, O., “Neues Verfahren zur Herstellung von blendenstreuungsfreien Röntgen-Klein-winkelaufnahmen, II” Monatsk. Chem. 85:660672, 1954.Google Scholar
26. Kratky, O., “Neues Verfahren zur Herstellung von blendenstreuungsfreien Röntgen-Kleinwinkelaufnahmen, III Kolloid-Z, 144:110120, 1955.Google Scholar
27. Kratky, O., “Neues Verfahren zur Herstellung von blendenstreuurigsfreien Röntgen-Kleinwinkelaufnahmen, IV” Z. Elektrochem. 62(1):6673, 1958.Google Scholar
28. Kratky, O. and Skala, Z., “Neues Verfahren zur Herstellung von blendenstreuungsfreien Röntgen-Kleimvinkelaufnahmen, V” Z. Elektrochem. 62(1): 7377, 1958.Google Scholar
29. Guinier, A., X-Ray Crystallographic Technology, Hilger and Watts, London, 1952, p. 118.Google Scholar
30. Sastry, B. S. R. and Hummel, F. A., “Studies in Lithium Oxide Systems: III. Liquid Immiscibility in the System Li2O-B2O3-SiO2,” J. Am. Ceram. Soc. 42(2): 8188, 1959.Google Scholar
31. Sastry, B. S. R. and Hummel, F. A., “Studies in Lithium Oxide Systems: VII. Li2O-B2O3-SiO2J. Am. Ceram. Soc. 43(1) :2333, 1960.Google Scholar
32. Vogel, W., “Ober Phasentrennung im Glas” (“Phase Separation in Glass“), in; Symposium sur la Fusion da Verre (Union Scientifique Continentale du Verre), Charleroi, Belgium, 1958, pp. 741-770.Google Scholar
33. Skattula, W., Vogel, W., and Wessel, H., “Über Phasentrennung und Borsäureanomalie in einfachen Natriumborat und technischen Alkaliborosilikatgläsern” (“Phase Separation and Boric Oxide Anomaly in Simple Sodium Borate and Technical Alkali Borosilicate Glasses”), Silikatteckn. 9(2):5162, 1958.Google Scholar
34. Vogel, W., “Struktur der Gläser vom Vycor-Typ in Glassystem Na2O-B2O3-SiO2” (“Structure of Vycor-Type Glasses in the Glass System Na2O-B2O3-SiO2”), Silikattechn, 9(7):323, 1958.Google Scholar
35. Vogel, W., “The Cellular Structure of Glass,” in: Structure of Glass, Vol. 2, E. A. Pori-Koshits (ed.), (Proceedings of the Third AH-Union Conference on the Glassy State, Leningrad, 1959); Consultants Bureau, New York, 1960, pp. 17-25.Google Scholar
36. Roy, R., “Metastable Liquid Immiscibility and Subsolidus Nucleation,” J. Am. Ceram Soc 43(12):670671, 1960.Google Scholar
37. Phillips, B. and Roy, R., “Controlled Phase Separation due to Metastable Liquid Immiscibility in Simple Silicate Systems,” Phys. Chem. Glasses 5 (6):172175, 1964.Google Scholar
38. Roy, R., “Phase Equilibria and the Crystallization of Glass,” Symposium on Nucleation and Crystallization in Glasses and Melts, American Ceramic Soc, 1962, pp. 39-45.Google Scholar
39. McKinstry, H. A. and Short, M. A., “Automatically Operated Balanced Filters for a Counter Diffractometer,” J. Sci. Instr. 37: 178, 1960.Google Scholar
40. Kahovec, L. and Ruck, H., “Eine Zahlrohr-Differenzmethode zur Ermittlung der diffusée Röntgen-Kleinwinkelstreuung von Präparaten” (“A Counter-Tube Differential Method for the Determination of Diffuse Small Angle Scattering of X-Rays by Preparations“), Z. Elektrochem. 57(9) :859862, 1953.Google Scholar
41. Zener, C., “Theory of Growth of Spherical Precipitates from Solid Solution,” J. Appl. Phys. 20:950953, 1949.Google Scholar
42. Frank, F. C., “Radially Symmetric Phase Growth Controlled by Diffusion,” Proc. Roy. Soc. (London), Ser. A 201:586599, 1950.Google Scholar
43. Wert, C. and Zener, C., “Interference of Growing Spherical Precipitate Particles,” J. Appl. Phys. 21:58, 1950.Google Scholar
44. Ham, F. S., “Theory of Diffusion Limited Precipitation,” J. Phys, Chem. Solids 6:335351, 1958.Google Scholar