Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T09:19:38.294Z Has data issue: false hasContentIssue false

Semiconductor Surface Characterization by Synchrotron X-ray Fluorescence Analysis

Published online by Cambridge University Press:  06 March 2019

Atsuo Iida*
Affiliation:
Photon Factory National Laboratory for High Energy Physics O-ho, Tsukuba-shi, Ibaraki, 305 Japan
Get access

Extract

Recently, external X-ray total reflection, or the grazing-incidence condition, is being widely used for the surface characterization in various research fields. Surface X-ray diffraction, or grazing-incidence diffraction/scattering, and total-reflection fluorescence XAFS (X-ray absorption fine structure) are typical, powerful techniques for surface characterization. X-ray fluorescence (XRF) analysis under the total-reflection condition has also been attracting much attention regarding analytical applications. Two types of XRF experiments have been carried out under the grazing-incidence condition. One is trace-element analysis of a dried solution sample or a semiconductor wafer; another is an analysis of the elemental concentration-profile in depth. Both experiments are closely related to each other, and are valuable and promising because of their non-destructive nature and the high precision of XRF analysis.

Type
I. Surface and Near-Surface X-Ray Spectroscopy
Copyright
Copyright © International Centre for Diffraction Data 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feidenhans'l, R.: Surface structure determination by X-ray diffraction, Surface Science Rep. 10: 105 (1989).10.1016/0167-5729(89)90002-2Google Scholar
2. Greaves, G. N., Glancing angle X-ray absorption spectroscopy, these Proceedings.Google Scholar
3. Yoneda, Y. and Horiuchi, T., Optical flats for use in X-ray spectrochemical microanalysis, Rev, Sci. Instr. 42: 1069 (1971).Google Scholar
4. Aiginger, H. and Wobrauschek, P.: Total reflectance X-ray spectrometry, in: “Adv. in X-Ray Anal.,” vol. 28, pl, C. S.Barrett, P. K.Predecki and D. E. Leyden, eds., Plenum Press, New York, (1985).Google Scholar
5. Nishihagi, K., Fujino, N., Taniguchi, T. and Ikeda, S., Impurity analysis of silicon wafer by monochro TRXRF, these proceedings.Google Scholar
6. Bloch, J. M., Sansone, M., Rondelez, F., Peiffer, D. G., Pincus, P., Kim, M. W. and Eisenberger, P. M., Concentration profile of a dissolved polymer near the air-liquid interface: X-ray fluorescence study, Phys. Rev. Lett. 54: 1039 (1985).Google Scholar
7. Bedzyk, M. J., Bommarito, G. M. and Schildkraut, J. S., X-ray standing wave at a reflecting mirror surface, Phys. Rev. Lett. 62: 1376 (1989).Google Scholar
8. Iida, A., Sakurai, K., Yoshinaga, A. and Gohshi, Y., Grazing incidence X-ray fluorescence analysis, Nucl. Instr. and Methods A246: 736 (1986).Google Scholar
9. Iida, A., Sakurai, K., Gohshi, Y. and Komiya, S.: Analysis of contamination layer of InP Process by synchrotron radiation-excited X-ray fluorescence, Jpn. J. Appl. Phys. 27: L1825 (1988).Google Scholar
10. Iida, A., Sakurai, K. and Gohshi, Y., Near-surface analysis of semiconductor using grazing incidence X-ray fluorescence, in: “Adv. in X-Ray Anal.”, vol.31, p487, C. S.Barrett, J. V.Gilfrich, R. Jenkins, J. C.Russ, J. W.Richardson, Jr. and P. K.Predecki eds., Plenum Press, New York (1988).Google Scholar
11. Brunei, M. and Gilles, B., Grazing incidence X-ray fluorescence, Coll. Phys. C7: 85 (1989).Google Scholar
12. Becker, R. S., Golovchenko, J. A. and Patel, J. R., X-ray evanescent-wave absorption and emission, Phys. Rev. Lett., 50: 153 (1983).Google Scholar
13. Iida, A., Yoshinaga, A., Sakurai, K. and Gohshi, Y., Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays, Anal. Chem. 58: 394 (1986).Google Scholar
14. Bussing, T. D. and Holloway, P. H., Deconvolution of concentration depth profiles from angle resolved x-ray photoelectron spectroscopy data, J. Vac. Sci. Technol. A3: 1973 (1985).Google Scholar
15. Nefedov, I.V. and Baschenko, O. A., Relative intensities in ESCA and quantitative depth profiling, J. Electron Spectrosc. Relat. Phenom. 47: 1 (1988).Google Scholar
16. Parratt, L. G., Surface studies of solids by total reflection of X-rays, Phys. Rev. 95: 359 (1954).Google Scholar
17. Dev, B. N., Materlik, G., Grey, F., Johnson, R. L., Clausnitzer, M., Geometrical structure of the Ge/Si(111) interface and the Si(111) (7x7) surface, Phys. Rev. Lett. 57: 3058 (1986).Google Scholar
18. Matsushita, T., Iida, A., Ishikawa, T., Nakagiri, T. and Sakai, K., X-ray standing waves excited in multilayered structures, Nucl. Instr. and Methods, A246: 751 (1986).Google Scholar
19. Sakurai, K. and Iida, A., Near-surface chemical characterization using grazing incidence X-ray fluorescence, in: “Adv. in X-ray Anal.” vol. 33, p205, C. S.Barrett, J. V.Gilfrich, T. C.Huang, R. Jenkins and P. K.Predecki eds., Plenum Press, New York (1990).Google Scholar