Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T11:16:51.076Z Has data issue: false hasContentIssue false

Reciprocal Space Mapping of Epitaxial Materials Using Position-Sensitive X-ray Detection

Published online by Cambridge University Press:  06 March 2019

S. R. Lee
Affiliation:
Sandia National Laboratories Albuquerque, NM, 87185-1056
B. L. Doyle
Affiliation:
Sandia National Laboratories Albuquerque, NM, 87185-1056
T. J. Drummond
Affiliation:
Sandia National Laboratories Albuquerque, NM, 87185-1056
J. W. Medernach
Affiliation:
Sandia National Laboratories Albuquerque, NM, 87185-1056
P. Schneider Jr.
Affiliation:
Sandia National Laboratories Albuquerque, NM, 87185-1056
Get access

Abstract

Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages arc the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

Type
III. Applications of Diffraction to Semiconductors and Films
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Heinke, H., Moller, M. O., Hommel, D. and Landwehr, G., J. Crystal Growth 135 (1994) 41.Google Scholar
[2] Kidd, P. and Fewster, P. F., Proceedings of the 1993 Fall Meeting of the Materials Research Society, Symposium B, Boston, MA., November 19 - December 3, 1993, (to be published).Google Scholar
[3] van der Sluis, P., Verheijen, M. J. and Haisma, J., Appl. Phys. Lett. 64 (1994) 3605.Google Scholar
[4] Horng, S. T., Goorsky, M. S., Madok, J. H. and Haegel, N. M., J. Appl. Phys. 76 (1994) 2066.Google Scholar
[5] Matyi, R. J., Melloch, M. R. and Woodall, J. M., Appl. Phys. Lett. 60 (1992) 2642.Google Scholar
[6] McL, A.. Mathieson, Acta Cryst. A38 (1982) 378.Google Scholar
[7] Thompson, L. R., Collins, G. J., Doyle, B. L. and Knapp, J. A., J. Appl. Phys. 70 (1991) 4760.Google Scholar
[8] Picraux, S. T., Doyle, B. L. and Tsao, J. Y., Chapter 3, Semiconductors and Semimetah 33 (AT&T, 1991) 139222.Google Scholar
[9] Braun, M. GmbH, Technical data for detector Type-OED 50/R250 (1987).Google Scholar
[10] Pick, M. A., Bickmann, K., Pofahl, E., ZwoU, K. and Wenzl, H., J. Appl. Cryst. 10 (1977) 450.Google Scholar
[11] Welser, J., Hoyt, J. L. and Gibbons, J. F., IEEE Electron Device Lett. 15 (1994) 100.Google Scholar
[12] Fritz, I. J., Olsen, J. A., Howard, A. J., Brennan, T. M., Hammons, B. E. and Vawter, G. A., IEEE J. Quantum Electron. 30 (1994) 452.Google Scholar
[13] Warren, B. E., Chapter 3, X-Ray Diffraction (Addison-Wesley, 1969) 2740.Google Scholar
[14] FoIIstaedt, D. M., Schneider, R. P. Jr., and Jones, E. D., Mat. Res. Soc, Symp. Proc. 326 (1994) 61.Google Scholar
[15] Medernach, J. W. and Headley, T. J. (private communication).Google Scholar
[16] Bensaid, A., Patrat, G., Brunei, M., de Bergevin, F. and Herino, R., Solid State Commun. 79 (1991) 923.Google Scholar