Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T00:40:32.557Z Has data issue: false hasContentIssue false

Quantitative Microprose Analysis with Energy Dispersive Detectors - A Status Report

Published online by Cambridge University Press:  06 March 2019

E. Lifshin*
Affiliation:
General Electric Corporate Research and Development Schenectady, New York 12301
Get access

Abstract

Methods for quantitative microprobe analysis of flat samples with energy dispersive spectrometers are reviewed for the case when the electron beam is well contained in the analyzed region. Particular attention is paid to models for background subtraction and peak overlap necessitated by limited energy resolution. Present indications are that careful data collection procedures can often lead to accuracy comparable to crystal diffraction spectrometers.

Type
Mathematical Correction Procedures for X-Ray Spectrochemical Analysis
Copyright
Copyright © International Centre for Diffraction Data 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Castaing, R., “Application of Electron Probes to Metallographic Analysis”, Ph.D. Diss,, University of Paris (1951).Google Scholar
2. Bowman, H.R., Hyde, E.K., Thompson, S.G. and Jared, R.C., “Application of High Resolution Semiconductor Detectors in X-ray Emission Spectroscopy”, Science 151, p. 562568 (1966).Google Scholar
3. Fitzgerald, R., Klaus, Keil, and Heinrich, K.F.J., “Solid-State Energy-Digpersion Spectrometer for Electron-Microprobe Analysis”, 159, p. 528530 (1968).Google Scholar
4. Tenny, K., “Rapid Analysis of Particles Using a Hondispersive X-ray Analyser”, Metallography 1, p. 221225 (1968).Google Scholar
5. Russ, J.C. and Kabaya, A., “Use of Non-Dispersive X-ray Spectrometer on the Scanning Electron Microscope”, In Johari, O., Editor, Proceedings of 1969 IXTRI SEM Symposium (1971).Google Scholar
6. Russ, J.C., Editor, “Energy Dispersion X-ray Analysis: X-ray and Electron Probe Analysis”, ASTM-SIP-485, ASTM (1971).Google Scholar
7. Woldseth, R., “X-ray Energy Spectrometry”, Kevex Corp. (1973).Google Scholar
8. Wells, O.C., “Scanning Electron Microscopy”, McGraw-Hill (1974).Google Scholar
9. Reed, S.J.B., “Electron Microprobe Analysis”, Cambridge University Press (1975).Google Scholar
10. Goldstein, J.I. and Yakowitz, H., eds., “Practical Scanning Electron Microscopy”, Plenum Press (1975).Google Scholar
11. Tenny, H., “Rapid Analysis of Particles Using a Mon-Dispersive Xray Analyzer”, Metallography 1, p. 221225 (1968).Google Scholar
12. Fitzgerald, R. and Gantzel, P., “X-ray Energy Spectrometry in the .1 to 10Å Range”, Energy Dispersion X-ray Analysis: X-ray and Electron Probe Analysis, ASTM-STM-485, American Society for Testing and Materials, p. 335 (1971).Google Scholar
13. Myklebust, R.L. and Heinrich, K.F.J., “Rapid Quantitative Electron Probe Microanalysis with a Nondiffractive Detection System”, Energy Dispersion X-ray Analysis, ASTM-STP-485, American Society for Testing and Materials, p. 232242 (1971).Google Scholar
14. Lifshin, E., “Solid State X-ray Detectors for Electron Microprobe Analysis”, ASTM-STP-485, American Society for Testing and Materials, p. 140153 (1971).Google Scholar
15. Elette, V., Sarracino, M., Rossi, F. and Colombo, R.L., “Energy Dispersion X-ray Analysis Using a Scanning Electron Microscope”, Metallography 5, p. 557561 (1972).Google Scholar
16. J.C. Russ, , “Background Subtraction for Energy Dispersive X-ray Spectra”, Proceedings Seventh National Conference on Electron Microprobe Analysis, San Francisco, Paper 76 (1972).Google Scholar
17. Short, J.M., “Time-Shared Computer Treatment of Energy Dispersive X -rayData”, Proceedings of the Sixth Annual SEM Symposium, ITTRI, Chicago, p. 95112 (1973).Google Scholar
18. Reed, S.J.B. and Ware, N.G., “Quantitative Electron Microprobe Analysis Using a Lithium Drifted Silicon Detector”, X-ray Spectrometry 2, p. 6974 (1973).Google Scholar
19. Schamber, F.H., “A New Technique for Deconvolution of Complex X-ray Energy Spectra”, Proceedings Eighth National Conference on Electron Probe Analysis, New Orleans, Paper 85 (1973).Google Scholar
20. Plant, A.G. and Lachance, G.R., “Quantitative Electron Microprobe Analysis Using an Energy Dispersive Spectrometer”, Proceedings Eighth National Conference Electron Probe Analysis, New Orleans, Paper 13 (1972).Google Scholar
21. Blum, F. and Brandt, M.P., “The Evaluation of the Use of a Scanning Electron Microscope Combined with an Energy Dispersive X-ray Analyzer for Quantitative Analysis”, X-ray Spectrometry 2, p. 121124 (1973).Google Scholar
22. Lifshin, E., Ciccarelli, M.F. and Bolon, R.B., “Determination of the Energy Distribution of the Continuum and the Ratio of Indirect to Direct X-ray Fluores cence”, Proceedings Eighth national Conference on Electron Probe Analysis, New Orleans, Paper 29 (1973).Google Scholar
23. Kirkendall, T.D., “Comprehensive Qualitative and. Quantitative Analysis of Energy Dispersive X-ray Spectra”, Proceedings of the Ninth Annual Conference of the Microbeam Analysis Society, Ottawa, Paper 24 (1974).Google Scholar
24. Corlett, M.X. and McDonald, M., “Quantitative Analysis of Sulphides and Sulphosalts”, Proceedings of the Ninth Annual Conference of the Microbeam Analysis Society, Ottawa, Paper 23 (1974).Google Scholar
25. Stathamj, P.J. “A Comparison of Some Quantitative Techniques for Treating Energy Dispersive Spectra”, Proceedings of the Ninth Annual Conference of the Microbeam Analysis Society, Paper 21 (1974).Google Scholar
26. Smith, D.G.W., “An Approach to Fully Quantitative Energy Dispersive Electron Microprobe Analysis”, Proceedings of the Tenth Annual Conference of the Microbeam Analysis Society, Las Vegas, Paper 21 (1975).Google Scholar
27. Fiori, C.E., Myklebust, R.L. and Heinrich, K.F.J., “FRAME B: An OnLine Correction Procedure for Quantitative Electron Probe Microanalysis with a Si(Li) Detector”, Proceedings of the Tenth Annual Conference of the Microbeam Analysis Society, Las Vegas, Paper 20 (1975).Google Scholar
28. Keyser, R.M., Bartell, D.M. and Moneymaker, R.S., “A Computer Program for Spectrum Analysis”, Proceedings of the Tenth Annual Conference of the Microbeam Analysis Society, Las Vegas, Paper 22 (1975).Google Scholar
29. Servant, J.M., Meny, L. and Champigny, M., “Energy Dispersion Quantitative X-ray Microanalysis on a Scanning Electron Microscope”, X-ray Spectrometry 4, p. 99100 (1975).Google Scholar
30. Ciccarelli, M.F., Bolon, R.B. and Lifshin, E., “Quantitative Analysis with an Energy Dispersive Detector”, Proceedings of the Tenth Annual Conference of the Microbeam Analysis Society, Las Vegas, Paper 23 (1975).Google Scholar
31. Yakowitz, H. and Heinrich, K.F.J., “Quantitative Electron Microprobe Analysis: Absorption Correction Uncertainty I”, Microchimica Acta , p. 182 (1968).Google Scholar
32. Lifshin, E. and Ciccarelli, M.F., “Present Trends in X-ray Analysis with the SEM”, Proceedings of the Sixth Annual SEM Symposium, IITRI, Chicago, p. 8996 (1973).Google Scholar
33. Heinrich, K.F.J., Editor, “Quantitative Electron Probe Microanalysis”, NBS Special Publication 248, Washington (1968).Google Scholar
34. Beaman, D.R. and Isasi, J.A., “Electron Beam Microanalysis”, ASTMSTP- 506, American Society for Testing and Materials, Philadelphia (1972).Google Scholar
35. Salter, W.J.M., “A Manual of Quantitative Electron Probe Microanalysis”, Structural Publications Ltd., London (1970).Google Scholar
36. Colby, J.W., “Quantitative Microprobe Analysis of Thin Insulating Films”, Advances in X-ray Analysis 2, Newkirk, J., Mallet, G., Pfeiffer, H., Eds., Plenum Press, New York, p. 287 (1968).Google Scholar
37. Henoc, J., Heinrich, K.F.J. and Myklebust, R.L., “A. Rigorous Correction Procedure for Quantitative Electron Probe Microanalysis (CORZ)”, NBS Technical Note 769 (1973).Google Scholar
38. Yakowitz, H., Myklebust, R.L. and Heinrich, K.F.J., “FRAME: An On-Line Correction Procedure for Quantitative Electron Probe Microanalysis”, NBS Technical Note 796 (1973).Google Scholar
39. Beaman, D.R. and Isasi, J.A., “A Critical Examination of Computer Programs Used in Quantitative Electron Microprobe Analysis”, Analytical Chemistry 42, p. 1540 (1970).Google Scholar
40. Ware, N.G. and Reed, S.J.B., “Background Corrections for Quantitative Electron Microprobe Analysis Using a Lithium Drifted Silicon X-ray Detector”, Journal of Physics E6, p. 286-288 (1973).Google Scholar
41. Kramers, H.A., “On the Theory of X-ray Absorption and of the Continuous X-ray Spectrum”, Philosophical Magazine 46, p. 836 (July- December 1923).Google Scholar
42. Green, M. and Cosslett, V.E., “Measurements of K, L and M Shell X-ray Production Efficiencies”, Brit. J. Appl- Physics, Ser. 2, Vol. 1, p. 425436 (1968).Google Scholar
43. Rao-Sahib, T.S. and Wittry, D.B., “The X-ray Continuum from Thick Targets”, Proceedings of the Sixth International Conference on X-ray Optics and Microanalysis, Shinoda, G., Kohra, K. and Ichinokawa, T., eds., p. 131-137 (1971).Google Scholar
44. Bethe, H.A., “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie”, Analen der Physik, ANPYA 5, p, 325 (1930).Google Scholar
45. Sommerfeld, A., Ann. Phys. 11 , p. 257 (1931).Google Scholar
46. Smith, D.G.W., Gold, C.M. and Tomlinson, D.A., “The Atomic Number Dependence of the X-ray Continuum Intensity and the Practical , Calculation of Background in Energy Dispersive Electron Microprobe Analysis”, X-ray Spectrometry 4, p. 149156 (1975).Google Scholar
47. Duncumb, P. and Reed, S.J.B., “The Calculation of Stopping Power and Backscatter Effects in Electron Probe Microanalysis”, Heinrich, K.F.J., ed. , National Bureau of Standards, Special Publication 298, Washington (1965).Google Scholar
48. Reed, S.J.B., “The Shape of the Continuous X-ray Spectrum and Background Corrections for Energy-Dispersive Electron Microprobe Analysis”, X-ray Spectrometry 4, p. 1417 (1975).Google Scholar
49. Heinrich, K.F.J., “The Absorption Correction Model for Microprobe Analysis”, Proceedings of the Second National Conference on Electron Microprobe Analysis, Paper No. 7, Boston (1967).Google Scholar
50. Bolon, R.B., private communication.Google Scholar
51. Sutfin, L.V., Ogilvie, R.E. and Harris, R.S., “Selection of Optimum Pulse Height Analysis Window”, Proceedings of the Fourth National Conference on Electron Microprobe Analysis, Paper 54, Pasadena (1969) .Google Scholar
52. Reed, S.J.B. and Ware, N.G., “The Measurement of X-ray Peak Intensities with a Lithium Drifted Silicon Detector by Integration Over a Fixed Energy Range”, Journal of Physics E 5, p. 1112-1114, Great Britain (1972).Google Scholar
53. Dolby, R.M., Proc. Phys, Soc. 73, p. 316 (1959).Google Scholar
54. Birks, L.S. and Batt, A.P., Anal. Chem. 35, 778 (1963).Google Scholar
55. Reed, S.J.B. and Ware, N.G., “Escape Peaks and Internal Fluorescence in X-ray Spectra Recorded with Lithium Drifted Silicon Detectors”, Journal of Physics E 5, p. 582-3 (1972).Google Scholar
56. Woodhouse, J.B., “Escape Peaks In Si(Li) Detectors”, Proceedings of the Seventh National Conference on Electron Probe Analysis, EPASA, Paper Ho. 79, San Francisco (1972).Google Scholar
57. Beaman, D.R. and Solosky, L.F., “Accuracy of Quantitative Electron Probe Microanalysis with Energy Dispersive Spectrometers”, Analytical Chemistry 44, p. 1598-1610 (1972).Google Scholar
58. Duncumb, P., Shields-Mason, P.K. and daCasa, C., in “Vth International Congress on X-ray Optics and Microanalysis”, Mollenstedt, G. and Gaukler, K.H., eds,, p. 146 (1968).Google Scholar
59. Puncumb, P., Shields-Mason, P.K. and DaCasa, C., Tube Investments Research Laboratories Report No. 238 (1968).Google Scholar
60. Desborough, G.A. and Heidel, E.H., “Characteristics, Performance, and Quantitative Analytical Capability of an Energy-Dispersive Spectrometer on an Electron Microprobe Dsing Low Operating Voltages”, Applied Spectroscopy 27, p. 456463 (1973).Google Scholar
61. Bishop, H.E., “Calculations of Electron Penetration and X-ray Production in a Solid Target”, X-ray Optics and Microanalysis, Deschamps, P., Castaing, R., Philibert, J., eds., p. 112-119 (1966).Google Scholar
62. Berger, M.J. and Seltzer, S.M., “Tables of Energy Losses and Ranges of Electrons and Positions”, Rational Academy of Sciences-National Research Council Publications, NASRA, 1133, p. 205 (1964).Google Scholar
63. Philibert, J., “A Method for Calculating the Absorption Correction in Electron-Probe Microanalysis”, X-ray Optics and X-ray Microanalysis, Pattee, H.H., Cosslett, V.E., Arne Engstrom, eds., Third International Symposium, Stanford (1962).Google Scholar
64. Reed, S.J.B., “Characteristic Fluorescence Correction in Electron- Probe Microaiialysis”, British Journal of Applied Physics 16, p, 913 (1965).Google Scholar