Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T01:00:19.138Z Has data issue: false hasContentIssue false

Porotectosilicate Structure Determination from Model Building

Published online by Cambridge University Press:  06 March 2019

George T. Kokotailo
Affiliation:
Mobile Research and Development Corporation, Research Department, Paulsboro, N. J. 08066
John L. Schlenker
Affiliation:
Mobile Research and Development Corporation, Research Department, Paulsboro, N. J. 08066
Get access

Abstract

Porotectosilicates are a class of siliceous crystalline materials which includes both zeolites and materials which resemble zeolites in crystal structure, but may or may not have ion exchange capability. The framework structures of these porotectosilicates are comprised of “T” atoms tetrahedrally coordinated to oxygen, where “T” can be Al, Si or any other element capable of isomorphous substitution for silicon. The occurrence of small crystals and the additional problems introduced by the presence of stacking faults and crystal twinning make structure determination of porotectosilicates by conventional approaches difficult.

The industrial significance of these materials has led to the development of a technique which permits the determination of their structure. The method involves the construction of appropriate hypothetical models, a DLS refinement followed by computation of a Smith plot for comparison with the experimental powder pattern. Model crystal structures may now be refined using the Rietveld technique. It is expected that this technique will contribute significantly to the solution of porotectosilicate structures which are difficult--if not impossible--to establish by other techniques.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weisz, P. B. and Frilette, V. J., J. Phys. Chem. 64:392 (1960),Google Scholar
2. Eastwood, S. C., R. D, Drew, and Eartzell, F. D., Oil and Gas Journal 60:152 (1962).Google Scholar
3. Plank, C. J., Rosinski, E. J., and Hawthorne, W. P., Ind. Etig. Chem. Prod. Res. Dev. 3:165 (1964).Google Scholar
4. Meisel, S. L., McCullough, J. P., Lechthaler, C. K., and Weisz, P. B., Chem. Tech. 6:86 (1978).Google Scholar
5. Chen, N. Y., Gorring, R. L., Ireland, K. K., and Stein, T. R., Oil and Gas J. 75:165 (1977).Google Scholar
6. Chen, H. Y., Garwood, W. E., Haag, W. O., and Schwartz, A. B., Symposium on Advances in Catalytic Chemistry, Oct. 1977, Snowbird, Utah.Google Scholar
7. Bragg, W. L. and Brown, G. B., Z. Kristallogr. 65:528 (1926).Google Scholar
12. Gibbs, G. V., Meagher, E. P., Smith, J. V., and Pluth, J. J., Fourth International Conference on Molecular Sieves, April, 1977, Chicago, Illinois.Google Scholar
13. U.S. Patent 3,702, 886.Google Scholar
14. U.S. Patent 3,709, 979.Google Scholar
15. Smith, D. K., A Revised Program for Calculating X-ray Powder Diffraction Patterns, UCRL 50264, Lawrence Radiation Laboratory, University of California, Livermore, CA. (1967); Norelco Reporter 15:57 (1968).Google Scholar
16. Kokotailo, G. T., Lawton, S. L., Olson, D. K., and Meier, W. M., Mature 272:437 (1978).Google Scholar
17. Kokotailo, G. T., Chu, P., Lawton, S. L., and Meier, W. M., Nature 275:119 (1978).Google Scholar
18. Kokotailo, G. T. and Meier, W. M., Proceedings of the Conference on the Properties and-Applications of Zeolites, Soc. Chem. Ind. London, April 1979.Google Scholar
19. Staples, L. W. and Gard, J. A., Mineral Mag. 32:261 (1959).Google Scholar
20. Bennett, J. M. and Gard, J. A., Nature 214:1005 (1967).Google Scholar
21. Patant, U. S. 2, 950, 952Google Scholar
22. Kokotailo, G. T., Sawruk, S. and Lawton, S. L., Am. Mineral. 57:439 (1972).Google Scholar
23. Vaughn, P. A., Acta Cryst. 21:983 (1966).Google Scholar
24. Breck, D. W., Zeolite Molecular Sieves, John Wiley & Sons, Mew York (1974).Google Scholar
25. Staples, L. W., Am. Mineral. 40:1095 (1955).Google Scholar
26. Meier, W. M., Adv. Chem. Series 121:39 (1973).Google Scholar
27. Reed, T. B. and Breck, D. W., J. Amer. Chem. Soc. 78:5972 (1956).Google Scholar
28. Barrer, R. M. and Meier, W. M., Trans Faradi Soc. 54:1074 (1958).Google Scholar
29. Gramlich, V., Dissertation ETH Zurich, 1971.Google Scholar
30. Gramlich, V. and Meier, W. M., Z. Kristallogr. 133:134 (1971).Google Scholar
31. Tillmanns, E. and Baur, W. H., J. Sol. State Chem. 7:69 (1973).Google Scholar
32. Dollase, W. A. and Baur, W. H., Am. Mineral. 61:971 (1976).Google Scholar