Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T12:02:44.571Z Has data issue: false hasContentIssue false

A New Method for yhe Determination of the Texture of Materials of Cubic Structure From Incomplete Reflection Pole Figures

Published online by Cambridge University Press:  06 March 2019

Daniel Ruer
Affiliation:
Laboratoire de Métallurgie Structurale Faculté des Sciences - Université de Metz Ila du Saulcy - 57000 METZ (France)
Raymond Baro
Affiliation:
Laboratoire de Métallurgie Structurale Faculté des Sciences - Université de Metz Ila du Saulcy - 57000 METZ (France)
Get access

Abstract

The main characteristics of a new method of texture analysis are presented as well aa a comparative study of the results obtained with three different methods.

Type
X-Ray Powder Diffraction
Copyright
Copyright © International Centre for Diffraction Data 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hans-Joachim, Bunge, “MathematischeMethoden der TexturAnalyse”, AkademieVerlag, Berlin, 1969.Google Scholar
2. Ryong-Joon, Roe, “Description of Crystallite Orientation in Polycrystalline Materials, III. General Solution to Pole Figure Inversion”, J. Appl. Phys., 36: 2024, 1965.Google Scholar
3. Ryong-Joon, Roe, “Inversion of Pole Figures for Materials Having Cubic Crystal Symmetry”, J. Appl. Phys., 37: 2069, 1966.Google Scholar
4. Williams, R. O., “Analytical Methods for Representing Complex Textures by Biaxial Pole Figures”, J. Appl. Phys., 39: 4329, 1968.Google Scholar
5. Jan, Pospiech and Jerzy, Jura, “Determination of the Orientation Distribution Function from Incomplete Pole Figures”, Zeitschrift fürMetallkunde, 65: 324, 1974.Google Scholar
6. Peter R., Morris, “Crystallite Orientation Analysis from Incomplete Pole Figures”, Adv. in X-Ray Analysis, 18: 514, 1974.Google Scholar
7. Alain, Clément and Gérard, Durand, “Programme FORTRAN pourl’Analyse Tridimensiomielle des Textures sans Hypothèse Restrictive sur les Symétries de 1'Echantillon”, J. Appl. Cryst., 8: 589, 1975.Google Scholar
8. Daniel, Ruer, Thèsed'Etat, University of Metz (France), to be published.Google Scholar
9. Durand, E., “Solutions Numériques des Equations Algébriques”, Tome 2, Masson, Paris, 1961, 120.Google Scholar
10. Alain, Clément and Pierre, Coulomb, “Représentation de la Fonction de Répartition de la Texture paruneSérie de Projections Stéréographiques ou par uneSérie de Coefficients”, Les MémoiresScientifiques de la Revue de Métallurgie, 1: 63, 1976.Google Scholar