No CrossRef data available.
Published online by Cambridge University Press: 06 March 2019
Large area, parallel beams of x-rays are potentially useful in many diffraction, imaging and other x-ray analysis applications. Diffraction, in typical experiments, uses only a small portion of the incident beam that is within a limited “rocking curve” of the crystal capable of diffracting, although the whole crystal may be illuminated by the incident beam. Signal intensity can be increased if the ”whole” crystal can be made to diffract simultaneously. Similarly for imaging, improved results also are possible if divergent beams are replaced with nearly parallel ones. Production of parallel beams of large areal extent has not been simple. Often this meant that the source had to be placed at great distances from the sample, reducing the incident intensity. Sometimes, asymmetric cuts of crystals can be used to increase beam cross-sectional areas.
Production of parallel beams of large area! extent has not been simple. Often this meant that the source had to be placed at great distances from the sample, reducing the incident intensity. Sometimes, asymmetric cuts of crystals can be used to increase beam cross-sectional areas.