Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T15:24:13.594Z Has data issue: false hasContentIssue false

Mirror Heaters for High Temperature X-Ray Diffraction

Published online by Cambridge University Press:  06 March 2019

Julius Schneider*
Affiliation:
Institut für Kristallographie und Mineralogie Theresienstraße 41, Universität München D-8000 München 2, Germany
Get access

Extract

For the generation of high temperatures in X-ray and neutron diffraction experiments various techniques such as resistance heating, radiation heating, induction heating and gas flame heating have been applied (Aldebert, 1984). Mirror heaters usually employ some kind of focussing geometry to concentrate the radiation emanating from the heating element onto the sample: Two large parabolic mirrors focussing heat radiation from a carbon arc were used by Stecura (1968) to reach sample temperatures up to 1700°C. Hubert et al. (1974) used radiation from a short arc xenon lamp focussed by two parabolical mirrors to reach sample temperatures of 3200°C.

Type
VIII. High-Temperature and Non-Ambient Applications of XRD
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldebert, P., Revue Phys. Appl. 19: (649) 1984 Google Scholar
Boysen, H., Frey, F. and Vogt, T., Acta Cryst. B47: (881) 1991 Google Scholar
Eyer, A., Zimmermann, H. and Nitsche, R., ESA Spec. Publ. 114: (241) 1975 Google Scholar
Goebel, H. E., Annual ACA meeting. Pittsburgh 1992 Google Scholar
Hart, P. J., J.Opt.Soc.Amer. 48/9: (637) 1958 Google Scholar
Hill, R.J. and Madsen, I.C., Z.Kristallogr. 196: (73) 1991 Google Scholar
Hubert, J., Revcolevschi, A. and Collongues, R., Can.Metall.Q. 13: (361) 1974 Google Scholar
Lorenz, G., PhD thesis. Universität München (1988)Google Scholar
Lorenz, G., Frey, F., Schulz, H. and Boysen, H., Solid State Ionics 28-30: (497) 1988 Google Scholar
Mursic, Z., Vogt, T. and Frey, F., Acta Cryst. B48:584 (1992a)Google Scholar
Mursic, Z., Vogt, T., Boysen, H. and Frey, F., J.Appl.Cryst. 25:519 (1992b)Google Scholar
Neder, R., Frey, F. and Schulz, H., Acta Cryst. A46: (799) 1990 Google Scholar
OSRAM note Mt 6/68(1968)Google Scholar
QSRAM technical information no.2157 64715, (1975)Google Scholar
Schneider, J. and Schulz, H., Z.Kristallogr. 203: (1) 1993 Google Scholar
Schneider, J., Frey, F., Johnson, N. and Laschke, K., submitted to Z. Kristallogr. 1993 Google Scholar
Stecura, S., Rev.Sci.Instrum. 39: (760) 1968 Google Scholar
Thompson, P., Cox, D. E. and Hastings, J. B., J.Appl.Cryst. 20: (79) 1987 Google Scholar
Touloukian, Y. S., Ho, C. Y., Edts. Thermophysical Properties of Matter. Vol.12, Vol.13, IFI/Plenum Press, New York 1977 Google Scholar
Watanabe, A. and Shimazu, M., J.Appl.Cryst. 9: (466) 1976 Google Scholar
Wertheim, G. K., Butler, M. A., West, K. and Buchanan, D.N.E, Rev.Sci.Instrum. 11: (1369) 1974 Google Scholar
Wolfel, E. R., J.Appl.Cryst. 16: (341) 1983 Google Scholar