Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T15:55:16.582Z Has data issue: false hasContentIssue false

Interfaces and Strain in InGaAsP/InP Heterostructures Assessed with Dynamical Simulations of High-Resolution X-ray Diffraction Curves

Published online by Cambridge University Press:  06 March 2019

J. M. Vandenberg*
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
Get access

Abstract

The interfacial structure of a lattice-matched InGaAs/InP/(100)InP superlattice with a long period of ∼630Å has been studied by fully dynamical simulations of high-resolution x-ray diffraction curves. This structure exhibits a very symmetrical x-ray pattern enveloping a large number of closely spaced satellite intensities with pronounced maxima and minima. It appears in the dynamical analysis that the position and shape of these maxima and minima is extremely sensitive to the number N of molecular layers and atomic spacing d of the InGaAs and InP layer and in particular the presence of strained interfacial layers. The structural model of strained inrerfaces was also applied to an epitaxial lattice-matched 700Å InP/400Å InGaAsP/(100)InP heterostructure.

Type
III. Applications of Diffraction to Semiconductors and Films
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vandenberg, J. M., Panish, M. B., Temkin, H., and Hamm, R. A., Appl. Phys. Lett. 53, 1920 (1988).Google Scholar
2. HaSliwcil, M. A. G. and Lyon, M. H., SOTAPOCS XII and Superlattice Structures and Devices, Proc. Vol. 90-15, edited by D'Avanso, D. C., Enstrom, R. E., Macrander, A. T. and DeCoster, D., (Electrochcm. Soc. Inc. 1990) p. 385.Google Scholar
3. Vandenberg, J. M., Macrander, A. T., Hamm, R. A. and Panish, M. B., Phys. Rev. B44, 3991 (1991).Google Scholar
4. Antolini, A., Francesio, L., Gastaldi, L., Genova, F., Lamberti, C., Lanzzarini, L., Papuzza, C., Rigo, C. and Salviati, G., J. Cryst. Growth 127, 189 (1993).Google Scholar
5. Giannini, C., Tapfer, L., Tournie, E., Zhang, Y. H. and Ploog, K. H., Appl, Phys. Lett. 62, 149 (1993).Google Scholar
6. Vandenberg, J. M., Gershoni, D., Hamm, R. A., Panish, M. B., and Temkin, H., J. Appl. Phys. 66, 3635 (1989).Google Scholar
7. Macrander, A. T., Minami, E. R., and Berreman, D. W., J. Appl. Phys. 60, 1364 (1986).Google Scholar
8. Vandenberg, J. M., D. Ritter, Hamm, R. A., Chu, S. N. G. and Panish, M. B., Mat. Res. Soc. Symp. Proc, 281, 103 (1993).Google Scholar
9. Vandenberg, J. M., Hamm, R. A. and Chu, S. N. G., J. Cryst. Growth, 144, 9 (1994).Google Scholar