Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T11:35:23.867Z Has data issue: false hasContentIssue false

Elemental X-Ray Imaging of Fossils

Published online by Cambridge University Press:  06 March 2019

R. W. Morton
Affiliation:
Route 1, BOX 343, Bartlesville, OK 74003
K. C. Witherspoon
Affiliation:
Loral Space Information Systems, Houston, TX 77058
Get access

Abstract

This paper describes the imaging of fossils using elemental x-ray area mapping (EXAM). The technique utilizes a commercially available instrument originally designed for the silicon chip industry. The EXAM data are processed digitally with imaging software to remove surface irregularities and enhance specimen details. Applications of this technique to specimens with irregular surfaces are described.

Type
III. XRS Techniques and Instrumentation
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Glasser, O., Dr. Röntgen, W. C., 2nd Ed., Charles C. Thomas, Publisher, Springfield, IL, (1958).Google Scholar
2. Taguchi, I. & Saito, T. Nondestructive Analysis of Archaeological Materials, Anal. Sci., 7 (1991) 659-62.Google Scholar
3. Nichols, M. C., Boehme, D. R., Ryon, R. W., Wherry, D. C., Cross, B. J. and Aden, G. A., Parameters Affecting X-ray Microfluorescence (XRMF) Analysis, Adv. X-ray Analysis, 30 (1987) 45.Google Scholar
4. Wherry, D. C., Cross, B. J., and Briggs, T. H., An Automated X-ray Microfluorescence Materials Analysis System, Adv. X-ray Analysis, 31 (1988) 93.Google Scholar
5. Carpenter, D. A., Improved Laboratory X—ray Source for Microfluorescence Analysis, X-Ray Spectrometry, 18 (1989) 253.Google Scholar
6. Maldonado, J. R. and Maydan, D. Fast Simultaneous Thickness Measurements of Gold And Nickel Layers On Copper Substrates, Bell Syst. Tech. J., 58 (1986) 1851.Google Scholar
7. Carpenter, D. A., Taylor, M. A. and Holcombe, C. E., Applications of a Laboratory X-ray Microprobe to Materials Analysis, Adv. X-ray Analysis, 32 (1989) 115.Google Scholar
8. Carpenter, D. A., Lawson, R. L., Taylor, M. A., Poirier, D. E., Morgan, K. Z. and Haney, G. W., A Scanning X-ray Microprobe with Glass Capillary Collimation, Microbeam Analysis, D. E. Newbury, Ed., San Francisco Press, San Francisco, (1988) 391.Google Scholar
9. carpenter, D. A. and Taylor, M. A., Fast, High-Resolution X-ray Microfluorescence Imaging, Adv. X-ray Analsis 34 (1991) 217.Google Scholar
10. Cross, B. J., Wherry, D. C., and Briggs, T. H., New Methods For High- Performance X-ray Fluorescence Thickness Measurements, Plat. Surf. Finish., 75:8 (1988) 68.Google Scholar
11. Cross, B. J. and Augenstine, J. E. Trace Analysis Using EDS: Applications To Thin-Film And Heterogeneous Samples, Adv. X-ray Analysis, 34 (1991) 57.Google Scholar
12. Bertin, E. P., Principles and Practice of X-ray Spectrometric Analysis, 2nd Ed., Plenum Press, New York (1975) 34.Google Scholar
13. Cross, B. J., Lamb, R. D., Ma, S. and Paque, J. M. Large Area X-ray Microfluorescence Imaging of Heterogeneous Materials, Adv. X-ray Analysis, 35(1991) In press.Google Scholar
14. Rasband, W., Image, Twilight Clone Electronic Bulletin Board Service, Silver Spring, MD 301-946-5032.Google Scholar