Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:42:29.988Z Has data issue: false hasContentIssue false

The Effect of Cold-Work on the X-Ray Diffraction Pattern of a Copper-Silicon-Manganese Alloy

Published online by Cambridge University Press:  06 March 2019

D. O. Welch
Affiliation:
RIAS Baltimore, Maryland
H. M. Otte
Affiliation:
RIAS Baltimore, Maryland
Get access

Abstract

Plastic deformation of metals produces a state characterized by the presence of residual elastic strains, small domains which diffract X-rays coherently, and often stacking faults; these effects may be studied with X-ray diffraction techniques. Changes in the lattice parameter, shifts in the relative positions of diffraction lines, and the broadening of diffraction lines were used to study the state of coldwork resulting in Cu-6.6 at.%Si-1.2 at.%Mn after deformation by filing, wiredrawing, and uniaxial tension at room temperature.

Both filing and wire-drawing produce large root-mean-square strains and stacking faults, whereas deformation by tension up to 22% extension fails to produce any clear evidence of faulting or root-mean-square strains. Tensile deformation causes fragmentation of coherent domains to an average dimension of 250 Å after 22% extension, and results in a radial, tensile, residual macrostrain arising from a smaller rate of work hardening in the surface layers than in the interior. Wire drawing also results in a residual macrostrain system. Deformation appears to enhance diffusion and promote solute clustering at room temperature.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stokes, A. R. and Wilson, A. J. C., Proc. Phys. Soc. 56: 174, 1944.Google Scholar
2. Kalakoutzky, N., Revue d'artillerie 31: 289, 389, 485, 1888; 32: 5, 165, 1888.Google Scholar
3.“Internal Stresses in Metals and Alloys,” Institute of Metals Symposium, London, 1948.Google Scholar
4. Hetenyi, M., ed., John Wiley & Sons, Inc., Handbook of Experimental Stress Analysis, New York, 1950.Google Scholar
5. Osgood, W. R., ed., Residual Stresses, Reinhold Publishing Corp., New York, 1954.Google Scholar
6. Greenough, G. B., Progr. in Metal Phys. 3: 176, 1952.Google Scholar
7. Reuss, A., Z. angew. Math. Mech. 9: 49, 1929 (quoted in ref. 6).Google Scholar
8. Voigt, W., Lehrbuch der Kristallphysik, B. G. Teubner, ed., 1910 and 1928 (quoted in ref. 6).Google Scholar
9. Neerfield, H., Mitt. Kaiser-Wilhelm-Inst. Eisenforsch, Düsseldorf 24: 61, 1942 (quoted in ref. 6).Google Scholar
10. Greenough, G. B., Proc Roy. Soc. (London) A197: 556, 1949.Google Scholar
11. Greenough, G. B., Nature 160: 258, 1947.Google Scholar
12. Greenough, G. B., Nature 166: 509, 1950.Google Scholar
13. Greenough, G. B., Metal Treatment 16: 58, 1949.Google Scholar
14. Finch, L. G., Nature 163: 402, 1949.Google Scholar
15. Garrod, R. I., Nature 165: 241, 1950.Google Scholar
16. Bollenratb, P., Hauk, V., and Oswald, E., Z. Ver. dtseh. Ing. 83: 129, 1939.Google Scholar
17. Kolb, K. and Macherauch, E., Phil. Mag. 7: 415, 1962.Google Scholar
18. Wood, W. A., Proc. Roy. Soc. (London) 4192: 218, 1948.Google Scholar
19. Donachie, M. J. and Norton, J. T., Trans. AIME 221: 962, 1962.Google Scholar
20. Meakin, J. D. and Wilsdorf, H. G. F., Trans. AIME 218: 737, 1960.Google Scholar
21. Ekvall, R. A. and Brown, N., ONR Report, Feb. 16, 1962.Google Scholar
22. Warren, B. E., “X-ray Studies of Deformed Metzte,” Progr. in Metal Phys. 8: 147, 1959.Google Scholar
23. Paterson, M. S., J. Appl. Phys. 28: 805, 1952.Google Scholar
24. Warren, E. E. and Warekois, E. P., Acta Met. 3: 473, 1955.Google Scholar
25. Wagner, C. N. J., Acta Met. 5: 427, 1957.Google Scholar
26. Wagner, C. N. J., Tetelman, A. S., and Otte, H. M., J. Appl. Phys. 33: 30803086, 1962.Google Scholar
27. Warren, B. E., J. Appl. Phys. 32: 2428, 1961.Google Scholar
28. Boiling, G. F., Massalski, T. B., and McHargue, C. J., Phil. Mag. 6: 491, 1961.Google Scholar
29. McHargue, C. J., Acta Met. 9: 851, 1961.Google Scholar
30. Klein, M. J., Brimhall, J. L., and Huggins, R. A., Acta Met. 10: 13, 1962.Google Scholar
31. Otte, H. M., Acta Cryst. 13: 1064, 1960 (Intl. Union Cryst. Fifth Intl. Cong, and Symp., paper 10-16, Abstracts, p. 89).Google Scholar
32. Taylor, A., X-ray Metallography, first edition, John Wiley & Sons, Inc., New York, 1961, p. 679.Google Scholar
33. Taylor, A., X-ray Metallography, first edition, John Wiley & Sons, Inc., New York, 1961, p, 788.Google Scholar
34. Barrett, C. S., Trans. AIME 188: 123, 1950.Google Scholar
35. Metah Handbook, ASM, 1948, p. 88.Google Scholar
36. Otte, H. M., J. Appl. Phys. 32: 1536, 1961.Google Scholar
37. Nelson, J. B. and Riley, D. P., Proc. Phys. Soc. (London) 57: 160, 1945.Google Scholar
38. Cohen, J. B. and Wagner, C. N. J., J. Appl. Phys. 33: 20732077, 1962.Google Scholar
39. Anantharaman, T. R., Acta Met. 9: 903, 1961.Google Scholar
40. Taylor, A., X-ray Metallography, first edition, John Wiley & Sons, Inc., New York, 1961, p. 686.Google Scholar
41. Otte, H. M., J. Appl. Phys. 33: 2892, 1962.Google Scholar
42. Helion, J. C., MS Thesis, Yale University, 1962.Google Scholar
43. Otte, H. M., J. Appl. Phys. 33: 1436, 1962.Google Scholar
44. Neighbors, J. R. and Smith, C. S., Acta Met. 2: 591, 1954.Google Scholar
45. Wechsler, M. S., Williams, J. M., and Otte, H. M., J. Metals 14: 81, 1962; J. Phys. Soc. Japan 15: (Supp.) (in press) (Proc. Int. Conf. Cryst. Lattice Defects, Japan, 1962).Google Scholar
46. Swann, P. R. and Nutting, J., J. Inst. Metah 90: 133, 1961.Google Scholar
47. Gevers, R., Amelinckx, S., and Delavignette, P., Phil. Mag. 6: 1515, 1961.Google Scholar
48. Smith, S. L. and Wood, W. A., Proc. Roy. Soc. (London) 179: 450, 1942.Google Scholar
49. Wood, W. A., Proc. Roy. Soc. (London) 172: 231, 1939.Google Scholar
50. Baldwin, W. M. Jr., Am,. Soc. Testing Materials 49: 1, 1949.Google Scholar
51. Haasen, P. and King, A., Z. Metallkunde 51: 722, 1960.Google Scholar
52. Smith, C. S., Trans. AIME 89: 164, 1930.Google Scholar
53. Dreyer, K. L., Metall 7: 186, 1953.Google Scholar
54. Wood, W. A. and Rachinger, W. A., J. Inst. Metals 75: 571, 1949; discussion, p. 1120.Google Scholar
55. Wagner, C. N. J., Private communication.Google Scholar
56. Johnson, C. A., Acta Cryst, 16 (in press).Google Scholar
57. Warren, B. E., J. Appl. Phys. 34 (in press).Google Scholar
58. Otte, H. M., J. Phys. Chem. Solids: 24, 169, 1963.Google Scholar
59. Otte, H. M., Welch, D. O., and Boiling, G. F., Phil. Mag. 8: 345, 1963.Google Scholar
60. Adler, R. P. I. and Wagner, C. N. J., J. Appl. Phys. 33: 3451, 1962.Google Scholar