Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T16:07:22.188Z Has data issue: false hasContentIssue false

Diffraction Space Mapping of Heteroepitaxial Layers

Published online by Cambridge University Press:  06 March 2019

Mary Halliwell*
Affiliation:
Philips Analytical X-ray, Almelo The Netherlands
Get access

Abstract

The acceptance angle of the detector of a double axis diffractometer is designed such that all of the diffracted beam is recorded for a rocking curve. When this acceptance angle is reduced, as in the triple axis diffractometer, two dimensional diffraction data can be recorded. In the resulting diffraction space maps each diffraction feature has a shape and a position from which the unit cell dimensions of a heteroepitaxial layer can be derived as well as information about relative tilts, curvature, lattice parameter variations and defect densities. Applications of diffraction space mapping using high and low resolution optics are discussed

Type
III. Applications of Diffraction to Semiconductors and Films
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zaumseil, P. and Winter, U., Phys Stat Sol A73, 455465 (1982).Google Scholar
2. Iida, A. and Kohra, K., Phys Stat Sol (1979) a5T, 533542.Google Scholar
3. Fewster, P. F. and Andrew, N. L., J Appl Cryst 26, 812819 (1993).Google Scholar
4. Loxley, N., Moore, C. D., Safa, M., Tanner, B. K., Clark, G. F., Herrmaun, F. M. and Mueller, G., this proceedings.Google Scholar
5. Ryan, T. W., Hatton, P. D., Bates, S., Watt, M., Sotomayor-Torres, C., Claxton, P. A. and Roberts, J. S., Semicond Sci Technol 2, 241243(1987).Google Scholar
6. Fewster, P. F., J Appl Cryst 25, 714723 (1992).Google Scholar
7. Fewster, P. F., Appl Surface Science 50 918 (1991).Google Scholar
8. Fewster, P. F., J Phys D: Appl Phys 26 A142145 (1993).Google Scholar
9. Gailhanou, M., Carlin, J. F. and Oesterle, U., J. Cryst Growth 140, 205–12 (1994).Google Scholar
10. Gaca, J. and Wojcik, M., Appl Phys Lett 65, 977 (1994).Google Scholar
11. Lee, S. R., Doyle, B. L., Drummond, T. J., Medernach, J. W. and R. P.|Schneider, this proceedings.Google Scholar
12. Mooney, P. M., Jordon-Sweet, J. L., Stephenson, G. B., LeGoues, F. K. and Chu, J. O., this proceedings.Google Scholar
13. van der Sluis, P., J Appl Cryst 27, 10101019 (1994).Google Scholar
14. Petruszello, J., Gaines, J. and van der Sluis, P., J Appl Phys 85, 6367 (1994).Google Scholar
15. Holy, V., Tapfer, L., Kopensteiner, E., Bauer, G., Lage, H., Brandt, O. and Ploog, K., Appl Phy Lett 63, 31403142 (1993).Google Scholar
16. van, P. der Sluis, Binsma, J. J. M. and van Dongen, T., Appl Phys Lett 62, 31863188 (1993).Google Scholar
17. Klappe, J. G. E., Barsony, L., Leifting, J. R. & Ryan, T. W., Thin Solid Films 235, 189197 (1993).Google Scholar
18. Koppensteiner, E., Schuh, A., Bauer, G., Holy, V., Bellet, D. and Dolino, G., Appl Phys Lett 65, 15041506 (1994).Google Scholar
19. Halliwell, M. A. G., Advances in X- ray Analysis, Volume 33, pp. 6166 (Plenum, 1990).Google Scholar
20. Hornstra, J. and Bartels, W. J., J Cryst Growth 44, 513517 (1978).Google Scholar
21. Lucas, C. A., E. Garstein and Cowley, R. A., Acta Cryst A45, 416422 (1989).Google Scholar
22. Fewster, P. F., J Appl Cryst 22, 6469 (1989).Google Scholar
23. Bartels, W. J., J Vac Sci Technol Bl, 338345 (1983).Google Scholar
24. Fewster, P. F. and Andrew, N. L., J Appl Phys 74, 31213125 (1993).Google Scholar
25. Thompson, L. R., Collins, G. J., Doyle, B. L. and Knapp, J. A., J Appl Phys 70, 47604769 (1991).Google Scholar