No CrossRef data available.
Article contents
Detection Confirmation and Determination of Trace Amounts of Selenium by X-Ray Methods
Published online by Cambridge University Press: 06 March 2019
Abstract
Recently, interest in the determination of selenium in trace amounts has been greatly intensified because of the nutritional aspects of this element. It has been reported that selenium in the amount of 13 μg in the form of sodium selenite in 100 g of feed has an effect similar to that of vitamin E. In the field of semiconductors, the detection and determination of trace amounts of selenium in arsenic, antimony, and small single crystals of solid solution of cadmium selenide and sulfide are of considerable importance in semiconductor performance.
In the Aerospace Research Laboratories, 4,5 diamino-6-tbiopyi-imidine has been successfully adopted as a reagent for the spectrophotometric determination of selenium. The reaction of 4,5 diamino-6-thiopyrimidine and tetxavalent selenium produces a yellow color with the formation of elemental selenium. It is possible to determine elemental selenium by collecting it in a thin layer. The selenium deposited in this layer may then be determined by an X-ray fluorescence method. A procedure of this nature has the advantage of eliminating the matrix effects commonly encountered in X-ray fluorescence. Furthermore, the slow generation of selenium affords a convenient means of detection and confirmation of this element by the use of X-ray diffraction procedures. By this technique selenium is first converted to its tetravalent state and is then reacted with 4,5 diamino-6-thiopyrimidine. On standing, the selenium is reduced to a red precipitate of elemental selenium which can be dissolved in carbon disulfide. Finally, the selenium can be converted into its hexagonal structure by annealing at 205-207°C.
- Type
- Research Article
- Information
- Copyright
- Copyright © International Centre for Diffraction Data 1963