Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T02:33:36.007Z Has data issue: false hasContentIssue false

Applications of Neutron Activation Analysis to Environmental and Biomedical Studies

Published online by Cambridge University Press:  06 March 2019

H. R. Lukens
Affiliation:
Gulf Energy St Environmental Systems, San Diego, California 92112
J. John
Affiliation:
Gulf Energy St Environmental Systems, San Diego, California 92112
Get access

Extract

The field of neutron activation analysis (NAA) has expanded significantly in the past decade, with the number of publications increasing from approximately 100 to more than 1000 per year. This phenomenon correlates with the greater availability of useful neutron sources, improvements in gamma-ray spectrometry equipment, and a rapid increase in successful NAA applications. A significant number of applications have been in the biomedical and environmental fields, especially in cases where elements must be measured at ultra-trace levels.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mantel, M. and Amiel, S., Anal. Chem. 44, 548 (1972).Google Scholar
2. Curtis, H. J. and Teresi, J. D., AECD-2872 (1946).Google Scholar
3. Tobias, L. A. and Dunn, R. W., Science 109, 109 (1949).Google Scholar
4. Keynes, R. D. and Lewis, P. R., Nature 165, 809 (1950).Google Scholar
5. Griffon, A. and Birbaud, J., Compt. Rend. 232, 1455 (1951).Google Scholar
6. Brues, A. M. and Robertson, O. H., J. Lab. Clin. Med. 36, 804 (1950).Google Scholar
7. Kehoe, R. A., Cholak, I., and Stary, R. V., J. Nutr. 19, 579 (1940).Google Scholar
8. Bowen, H. J. M., J. Nucl. Energy 3, 18 (1956).Google Scholar
9. Cotzias, G. C., Miller, S. T., and Edwards, J., J. Lab. Clin. Med. 67, 836 (1966).Google Scholar
10. Comar, D. and Lepoec, C., in Modern Trends in Activation Analysis, pp. 351356, Texas A&M University, College Station, Texas (1965).Google Scholar
11. Samsahl, K., Brune, D. and Wester, P. O., Report AE-24, Aktiebolaget, Atomenergi Stockholm (1963).Google Scholar
12. Girardi, F., Pietra, R. and Sabbioni, E., in Modern Trends in Activation Analysis, Vol. I, pp. 639641, NBS Special Publication 312 (1969).Google Scholar
13. Morrison, G. H. and Potter, N. M., Anal. Chem. 44, 839 (1972).Google Scholar
14. Strain, W. H., Rob, C. G., Pories, W. J., Childers, R. C., Hennessen, J. A., Thompson, M. F., Jr., and Graber, F. M., Trans. Am. Nucl. Soc. 11, 62 (June, 1968).Google Scholar
15. Smith, H., Forshufvud, S. and Wassen, A., Nature 194, 725 (1962).Google Scholar
16. Nixon, G. S. and Smith, H., J. Oral Ther. Pharaac. 1, 512 (1965).Google Scholar
17. Babb, A. L., Woodruff, G. L., Wilson, W. E., Jr., Henitz, P. A., Miller, W. P., and Stamm, S. T., Trans. Am. Nucl. Soc. 9, 591 (October/November, 1966).Google Scholar
18. Parr, R. M. and Taylor, D. M., Bioch. J. 91, 424 (1964).Google Scholar
19. Lukens, H. R., Heydorn, K., and Choy, T. K., Trans. Am. Nuc. Soc, 8, 331 (1965).Google Scholar
20. Comar, D. and Chevalier, F., Bull. Soc. Chim. Biol. 49, 1357 (1967).Google Scholar
21. Botavaoze, E. S., Mosulishvili, L. M., Kuchava, N. E., and Ghinturi, E. N., Phys. Med. Biol, 14, 19 (1969).Google Scholar
22. Babb, A. L., Woodruff, G. L., Miller, W. P., Wilson, W. E., Jr., Polinsky, P. D., and Decker, J. L., Trans. Am. Nucl. Soc. 10, 58 (1967).Google Scholar
23. Parr, R. M. and Taylor, D. M., Phys. Med. Biol. 8, 43 (1963).Google Scholar
24. Kaiser, D. G., AECU-4438 (1959).Google Scholar
25. Fleishman, D. M. and Guinn, V. P., Trans. Am. Nucl. Soc. 7, 327 (1964).Google Scholar
26. Betteridge, D., A.E.R.E.-R-4881 (1965).Google Scholar
27. Bethard, W. F., Schmitt, R. A., Olehy, D. A., Kaplan, S. A., Ling, S. M., Smith, R. H., and Mole, E. O., in Nuclear Activation Techniques in Life Sciences, Proc. of A Symposium, p. 533, I.A.E.A., Vienna (1969).Google Scholar
28. Johnson, R. F., Tothill, P., and Donaldson, G. W. K., Int. J. Appl. Rad. and Isot. 20, 103 (1969).Google Scholar
29. Wagner, H. N., Jr., Nelp, W. B., and Dowling, J. H., J. Clin. Invest. 40, 1984 (1961).Google Scholar
30. Lenihan, J. M. A., Comar, D., Riviere, R., and Kellershoh, C., Nature 214, 1221 (1967).Google Scholar
31. Palmer, H. E., Help, W. B., Murano, R., and Rich, C., Phys. Med. Biol, 13, 269 (1968).Google Scholar
32. Lukens, H. R., Fleishman, D. M., and MacKenzie, J. K., Gulf General Atomic Report GA-9427 (1969).Google Scholar
33. Battye, C. K., Tomlinson, R. W. S., Anderson, J., and Osborne, S. B., in Nuclear Activation Techniques in Life Sciences, Proc. of a Symposium, p. 573, I.A.E.A., Vienna (1967).Google Scholar
34. Newton, D., Anderson, J. Battye, C. K., Osborne, S. B., and Tomlinson, R. W. S., I.J.A.R.I. 20, 61 (1969).Google Scholar
35. Nagai, T., Fujii, I. Muto, H., and Inouye, T., J. Nucl. Med. 10, 192 (1969).Google Scholar
36. Lenihan, J. M. A., Smith, H., and Chalmers, J. G., Nature 181, 1463 (1958).Google Scholar
37. Heydom, K., Clin. Chim. Acta 28, 349 (1970).Google Scholar
38. Schmitt, R. A., Smith, R. H., and Olehy, D. A., Geochim. et Cosmochim. Acta 27, 1077 (1963).Google Scholar
39. Smales, A. A. and Pate, B. D., Analyst 17, 188 (1952).Google Scholar
40. Blanchard, R. L., Leddicotte, G. W., and Moeller, D. W., 2nd U.N. Int'l. Conf., Peaceful Uses of Atomic Energy 28, P. 796, pp. 511516 (1958).Google Scholar
41. Guinn, V. P. and Potter, J. C., Agr. & Food Chem. 10, 232 (1962).Google Scholar
42. Tarras, S. and Pirtle, O. L., Jr., Trans. Am. Nucl. Soc. 5 (2), 280 (1962).Google Scholar
43. Fineman, I., Lundggren, K. Forsberg, H. G., and Erwall, L. G., Int. J. Appl. Rad. & Isot. 5, 280 (1959).Google Scholar
44. Guinn, V. P., Proc. Inter. American Conf. on Radiochemistry, p. 317, Montevideo (1963).Google Scholar
45. Christeil, R., Erwall, L. G., Lundggren, K., Sjostrand, B., and Westermark, T., Proc. 1965 Int'l. Conf., Modern Trends in Activation Analysis, p. 380, Collegr Station, Texas (1965).Google Scholar
46. Kosta, L. and Byrne, A. R., Talanta 16, 1297 (1969).Google Scholar
47. Wallace, R. A., Fulkerson, W., Shultz, W. D., and Lyon, W. S., ORHL-KSF-EP-l (1971).Google Scholar
48. Guinn, V. P., Kishore, R., Folsom, T. R., Hodge, V. F., and Sargent, M. C., Trans. Am. Nucl. Soc. 15(1), 68 (1972).Google Scholar
49. Westermark, T., in Lenhan, J. M. A., Thomson, S. J., and Guinn, V. P., Editors, Advances in Activation Analysis, Vol. 2, pp. 5788, Academic Press (1972).Google Scholar
50. Perkins, R. W. and Rancitelli, L. A., Proc. of Am. Nuc. Soc. Topical Meeting on Nuclear Methode in Environmental Research, p. 47, University of Missouri (August, 1971).Google Scholar
51. Wahlgren, M., Rawlings, F. R., and Edgington, D. N., ibid., p. 97.Google Scholar
52. Pederson, K. and Gileadi, A., ibid., p. 104.Google Scholar
53. Lukens, H. R., Bryan, D., and Hiatt, M., ibid., p. 62.Google Scholar
54. John, J., ibid., p. 72.Google Scholar
55. Gordon, G. E., Zoller, W. H., Gladney, E. S., and Jones, A. G., ibid., p. 30.Google Scholar
56. Dams, R., Rahn, K. A., Nifong, G. D., Ribbins, J. A., and Winchester, J. W., ibid., p. 8.Google Scholar