Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T04:44:24.425Z Has data issue: false hasContentIssue false

The Application of Tunable Monochromatic Synchrotron Radiation to the Quantitative Determination of Trace Elements

Published online by Cambridge University Press:  06 March 2019

R. D. Giauque
Affiliation:
Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 U.S.A.
J. M. Jaklevic
Affiliation:
Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 U.S.A.
A. C. Thompson
Affiliation:
Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 U.S.A.
Get access

Extract

The potential advantages of synchrotron sources for x-ray fluorescence analysis have been discussed by several authors. These advantages include high incident flux, tunable excitation energies using crystal monochromators, and reduction of scattered background due to polarization effects. Minimum detectable limits have both been calculated and measured, and have demonstrated the improvements that can be achieved vising synchrotron sources. In this paper we present results obtained using tunable, monochromatic excitation and a high resolution lithium-drifted silicon, Si(Li), spectrometer for the quantitative analysis of a variety of sample types. Our experiments were designed to investigate the advantages and limitations of tunable monochromatic excitation with respect to optimum sensitivity, accuracy, and elemental selectivity in energy dispersive x-ray fluorescence analysis.

Type
III. New Techniques and Instrumentation in XRF
Copyright
Copyright © International Centre for Diffraction Data 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sparks, C. J. Jr., Chapter 14, in : “Synchrotron Radiation Research,” Winick, H. and Doniach, S., eds., Plenum, New York (1980).Google Scholar
2. Gordon, B. M., Nucl. Instrum, Methods 204:223 (1982).Google Scholar
3. Gilfrich, J. V., Skelton, E. F., Nagel, D. J., Webb, A. W., Qadri, S. B., Kirkland, J. P., Adv. X-Ray Anal. 26:313 (1983).Google Scholar
4. Gilfrich, J. V., Skelton, E. F., Qadri, S. B., Kirkland, J. P., Nagel, D. J., Anal. Chem. 55:187 (1983).Google Scholar
5. Bos, A. J. J., Vis, R. D., Verheul, H., Prins, M., Davies, S. T, Bowen, D. K., Makjanic, J. and Valkovic, V., Nucl. Instrum. Methods B3:232 (1984).Google Scholar
6. Jones, K. W., Gordon, B. M, Hanson, A. L., Hastings, J. B., Howells, M. R., Kraner, H. W. and Chen, J.R., Nucl. Instrum. Methods B3:225 (1984).Google Scholar
7. Chen, J. R., Martys, N., Chao, E. C. T., Minkin, J. A., Thompson, C. L., Hanson, A. L., Kraner, H. W., Jones, K. W., Gordon, B. M. and Mills, R.E., Nuc1. Instrum. Methods B3:241 (1984)Google Scholar
8. Gladney, E. S., “Compilation of Elemental Concentration Data for NBS Biological and Environmental Standard Reference Materials, “Los Alamos Report LA-8438-MS (1980).Google Scholar