Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T23:22:00.890Z Has data issue: false hasContentIssue false

Drug treatment for early Alzheimer's disease

Published online by Cambridge University Press:  02 January 2018

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alzheimer's disease is likely to be one of the challenges for the early part of the 21st century. Better knowledge of the molecular biology, genetics and pathogenesis of the condition have led to a host of psychopharmacological compounds being developed which may help in its the treatment, while epidemiological studies have suggested that existing treatments for other chronic conditions may have an effect on the presentation of Alzheimer's disease.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 1998 

References

Anand, R. et al (1996) Efficacy and safety results of the early phase studies with Exelon (ENA-713) in Alzheimer's disease: an overview. Journal of Drug Development in Clinical Practice, 8, 114.Google Scholar
Aubert, I., Araujo, D. M., Cecyre, D. et al (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer and Parkinson diseases. Journal of Neurochemistry, 58, 529541.Google Scholar
Birge, S. J. (1997) The role of oestrogen in the treatment of Alzheimer's disease. Neurology, 48 (suppl. 5), 3641.CrossRefGoogle ScholarPubMed
Burns, A., Jacoby, R. & Levy, R. (1990) Psychiatric phenomena in Alzheimer's disease. III: Disorders of mood. British Journal of Psychiatry, 157, 8185.CrossRefGoogle ScholarPubMed
Colenda, C. C. (1995) III. Agitation: a conceptual overview. In Behavioural Complications in Alzheimer's Disease (ed Lawlor, B. A.) pp. 317. Washington, DC: American Psychiatric Press.Google Scholar
Court, J. A. & Perry, E. K. (1994) CNS nicotinic receptors. Possible therapeutic targets in neurodegenerative disorders. CNS Drugs, 2, 216233.Google Scholar
Coyle, J. T., Price, D. L. & De Long, M. R. (1983) Alzheimer's disease: a disorder of cortical cholinergenic innervation. Science, 219, 11841190.Google Scholar
Cummings, J. L., Miller, B., Hill, M. A. et al (1987) Neuropsychiatric aspects of multi-infarct dementia and dementia of the Alzheimer type. Archives of Neurology, 44, 389393.Google Scholar
Cummings, J. L. & Victoroff, J. I. (1990) Noncognitive neuropsychiatric syndromes in Alzheimer's disease. Neuropsychiatry, Neuropsychology and Behavioural Neurology, 3, 140158.Google Scholar
Cummings, J. L., Mega, M., Gray, K. et al (1994) The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology, 44, 23082314 Google Scholar
Cummings, J. L. & Kaufer, D. (1996) Neuropsychiatric aspects of Alzheimer's disease: the cholinergenic hypothesis revisited. Neurology, 47, 876883.CrossRefGoogle Scholar
Davies, P. & Maloney, A. J. F. (1976) Selective loss of central cholinergenic neurons in Alzheimer's disease. Lancet, ii, 1403.Google Scholar
Doraiswamy, P. M., Beiber, F., Kaiser, L. et al (1997) The Alzheimer's Disease Assessment Scale. Patterns and predictors of cognitive performance in multicenter Alzheimer's disease trials. Neurology, 48, 15111517.Google Scholar
Eagger, S. A., Levy, R. & Sahakian, B. J. (1991) Tacrine in Alzheimer's disease. Lancet, 337, 989992.CrossRefGoogle ScholarPubMed
Erkinjuntti, T., Hokkanen, L., Sulkava, R. et al (1988) The Blessed Dementia Scale as a screening test for dementia. International Journal of Geriatric Psychiatry, 3, 267273.Google Scholar
Ferris, S. H., Reisberg, B. & Crook, T. (1991) Pharmacologic treatment of senile dementia: choline, L-dopa, priacetam and choline plus priacetam. In Aging (ed Corkin, S.) pp. 475481. New York: Raven Press.Google Scholar
Fillit, H., Weinreb, H., Cholst, I. et al (1986) Observations in a preliminary open trial of estradiol therapy for senile dementia Alzheimer's type. Psychoneuroendocrinology, 11, 337345.Google Scholar
Folstein, M. F., Folstein, S. E. & McHugh, P. R. (1975) ‘Mini-Mental State’ A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198 Google Scholar
Gorman, D. G., Read, S. & Cummings, J. L. (1993) Cholinergic therapy of behavioral disturbances in Alzheimer's disease. Neuropsychiatry, Neuropsychology and Behavioural Neurology, 6, 229234.Google Scholar
Honjo, H., Tanaka, K., Kashiwagi, T. et al (1995) Senile dementia – Alzheimer's type and estrogen. Hormone and Metabolic Research, 27, 204207.Google Scholar
Huber, M., Kittner, B., Hojer, C. et al (1993) Effects of propentofylline on regional cerebral glucose metabolism in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 13, 526530.Google Scholar
Kaufer, D. I., Cummings, J. L. & Christine, D. (1996) Effect of tacrine on behavioural symptoms in Alzheimer's disease: an open label study. Journal of Geriatric Psychiatry and Neurology, 9, 16.Google Scholar
Knopman, D., Schneider, L., Davis, K. et al (1996) Long-term tacrine (Cognex(tm)) treatment: effects on nursing home placement and mortality. Neurology, 47, 166177.Google Scholar
Lubeck, D. P., Mazonson, P. D. & Bowe, T. (1994) Potential effect of tacrine on expenditures for Alzheimer's disease. Medical Interface, 7, 132138.Google Scholar
Mega, M., Cummings, J. L., Fiorello, T. et al (1996) The spectrum of behavioural changes in Alzheimer's disease. Neurology, 46, 130135.CrossRefGoogle ScholarPubMed
Mendez, M. F., Martin, R. J., Smyth, K. A. et al (1993) Psychiatric symptoms associated with Alzheimer's disease. Journal of Neuropsychiatry and Clinical Neurosciences, 2, 2833.Google Scholar
Mohs, R. C. (1995) Neuropsychological assessment of patient's with Alzheimer's disease. In Psychopharmacology: The Fourth Generation of Progress (eds Bloom, F. E. & Kupfer, D. J.) pp. 13771388. New York: Raven Press.Google Scholar
Mohs, R. C. & Cohen, L. (1988) Alzheimer's disease assessment scale (ADAS). Psychopharmacology Bulletin, 24, 627628.Google Scholar
Newhouse, P. A., Sunderland, T., Tariot, P. N. et al (1988) Intravenous nicotine in Alzheimer's disease: a pilot study. Psychopharmacology, 95, 171175.CrossRefGoogle ScholarPubMed
Nordberg, A., Nilsson-Hakansson, L., Adem, A. et al (1989) The role of nicotinic receptors in the pathophysiology of Alzheimer's disease. Progress in Brain Research, 79, 353362.Google Scholar
Paganini-Hill, A. & Henderson, V. W. (1994) Estrogen deficiency and risk of Alzheimer's disease in women. American Journal of Epidemiology, 140, 256261.Google Scholar
Perry, E. K., Perry, R. H., Smith, C. J. et al (1987) Nicotinic receptor abnormalities in Alzheimer's and Parkinson's diseases. Journal of Neurology, Neurosurgery and Psychiatry, 50, 806809.Google Scholar
Robinson, D., Friedman, L., Marcus, R. et al (1994) Estrogen replacement therapy and memory in older women. Journal of American Geriatric Society, 42, 919922.Google Scholar
Rogers, J., Kirby, L. C., Hempelman, S. R. et al (1993) Clinical trial of indomethacin in Alzheimer's disease. Neurology, 43, 16091611.Google Scholar
Rogers, J., Perdomo, C. & Friedhoff, L. T. (1995) Clinical benefits are maintained during long-term treatment of Alzheimer's disease with the acetylcholinesterase inhibitor, E2020. European Neuropsychopharmacology, 5, 386.Google Scholar
Rogers, J., Friedhoff, L. T. & The Donepezil Study Group (1996) The efficacy and safety of donepezil in patients with Alzheimer's disease. Results of a US multicenter randomised double blind placebo controlled trial. Dementia, 7, 293303.Google Scholar
Roth, M., Mountjoy, C. Q. & Amrein, R. (1996) Moclobemide in elderly patients with cognitive decline and depression: An international double-blind, placebo-controlled trial. British Journal of Psychiatry, 168, 149157.Google Scholar
Sano, M., Ernesto, C., Thomas, R. G. et al (1997) A controlled trial of selegeline, alpha tocopheral, or both, as treatment for Alzheimer's disease. New England Journal of Medicine, 336, 12161222.Google Scholar
Schneider, L. S. & Farlow, M. R. (1995) Predicting response to cholinesterase inhibitors in Alzheimer's disease: possible approaches. CNS Drugs, 4, 114124.Google Scholar
Stern, R. G., Mohs, R. C., Davidson, M. et al (1994) A longitudinal study of Alzheimer's disease: measurement, rate and predictors of cognitive deterioration. American Journal of Psychiatry, 151, 390396.Google Scholar
Stewart, W. F., Kawas, C., Corrada, M. et al (1997) Risk of Alzheimer's disease and duration of NSAID use. Neurology, 48, 626632.CrossRefGoogle ScholarPubMed
Strolin Benedetti, M. & Dostert, P. (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochemical Pharmacology, 38, 555561.Google Scholar
Tariot, P. N., Cohen, R. M., Sunderland, T. et al (1987) L-deprenyl in Alzheimer's disease. Preliminary evidence for behavioural change with monoamine oxidase B inhibition. Archives of General Psychiatry, 44, 427433.Google Scholar
Whitehouse, P. J., Martino, A. M., Antuono, P. G. et al (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Research, 371, 146151.Google Scholar
World Health Organization (1992) The Tenth Revision of the International Classification of Diseases and Related Health Problems. (ICD–10). Geneva: WHO.Google Scholar
Zaczek, R., Chorvat, R. J., Earl, R. A. et al (1994) Neurotransmitter release enhancement as a possible therapy for neurodegenerative diseases: update on linopirdine (DUP996). In Alzheimer Disease: Therapeutic Strategies (eds Giacobini, E. & Becker, R.) pp. 252255. Boston, MA: Birkhauser.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.