Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T10:17:52.017Z Has data issue: false hasContentIssue false

Testing Web Mapping and Active Learning to Approach Lidar Data

Published online by Cambridge University Press:  29 November 2019

Marion Forest*
Affiliation:
Department of Anthropology, Brigham Young University, 800 SWKT, Provo, UT84604, USA
Laurent Costa
Affiliation:
UMR7041 Archéologie et Science de l'Antiquité, Centre National de la Recherche Scientifique, Maison Archéologie et Ethnologie, 21 allée de l'Université, Nanterre Cedex F-92023, France
Andy Combey
Affiliation:
Institut des Sciences de la Terre, Université Grenoble Alpes, 1381 rue de la piscine, 38400, Saint Martin d'Heres, France
Antoine Dorison
Affiliation:
UFR Histoire de l'Art et Archéologie, University Paris 1 Panthéon-Sorbonne, 3 rue Michelet, 75006Paris, France
Grégory Pereira
Affiliation:
UMR8096 Archéologie des Amériques, Centre National de la Recherche Scientifique, 21 allée de l'Université, Nanterre Cedex F-92023, France
*
(corresponding author, [email protected])

Abstract

After acquiring 91 km2 of lidar data from the Zacapu region, West Mexico, we confronted a series of issues that most archaeologists using this technology face. These include the large volume of data available, the limited training of potential “analysts,” the difficult development of a collective mapping tool and protocol, and the reliability of desk-based interpretation of archaeological features. In this article, we present an initiative conducted in 2015 and 2017 as an attempt to answer these methodological and pedagogical issues. We developed a web mapping platform to collectively interpret archaeological features using lidar-derived imagery and to train volunteer students to participate in this desk-based web mapping within a crowdsourcing framework. After evaluating the results of this initiative, we discuss the potential and limitations of this method for both lidar-based research and future training.

Después de adquirir 91 km2 de datos lidar para la región de Zacapu, Occidente de México, nos hemos enfrentados a una serie de problemas recurrentes en el uso de esta tecnología en arqueología. Incluyen el amplio volumen de datos, límites en la formación de “analistas” potenciales, dificultades en el desarrollo de protocolos de mapeo colectivos, y la confiabilidad de las interpretaciones de estructuras arqueológicas con base al mapeo realizado en gabinete. En este artículo, presentamos una iniciativa conducida en 2015 y 2017 para intentar responder a estas cuestiones metodológicas y pedagógicas. Hemos desarrollado una plataforma de mapeo web para interpretar colectivamente los objetos arqueológicos visibles en las imágenes generadas del lidar, y para entrenar estudiantes voluntarios a participar en este mapeo en un marco de crowdsourcing. Al seguir una discusión sobre el nivel de precisión del dato colectado, discutimos el potencial y las limitaciones del método para la investigación arqueológica usando lidar data y la formación de futuros arqueólogos.

Type
Articles
Copyright
Copyright 2019 © Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Banaszek, Łukasz, Cowley, David C., and Middleton, Mike 2018 Towards National Archaeological Mapping. Assessing Source Data and Methodology—A Case Study from Scotland. Geosciences 8(8):272. DOI:https://doi.org/10.3390/geosciences8080272.CrossRefGoogle Scholar
Bennett, Rebecca, Cowley, David C., and De Laet, Véronique 2014 The Data Explosion: Tackling the Taboo of Automatic Feature Recognition in Airborne Survey Data. Antiquity 88:896905. DOI:https://doi.org/10.1017/S0003598X00050766.CrossRefGoogle Scholar
Bennett, Rebecca, Welham, Kate, Hill, Ross, and Ford, Andrew 2012 A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data. Archaeological Prospection 19:4148. DOI:https://doi.org/10.1002/arp.1414.CrossRefGoogle Scholar
Bevan, Andrew 2015 The Data Deluge. Antiquity 89:14731484. DOI:https://doi.org/10.15184/aqy.2015.102.CrossRefGoogle Scholar
Canuto, Marcello A., Estrada-Belli, Francisco, Garrison, Thomas G., Houston, Stephen D., Acuña, Mary Jane, Kováč, Milan, Marken, Damien, Nondédéo, Philippe, Auld-Thomas, Luke, Castanet, Cyril, Chatelain, David, Chiriboga, Carlos R., Drápela, Tomáš, Lieskovský, Tibor, Tokovinine, Alexandre, Velasquez, Antolín, Fernández-Díaz, Juan Carlos, and Shrestha, Ramesh 2018 Ancient Lowland Maya Complexity as Revealed by Airborne Laser Scanning of Northern Guatemala. Science 361(6409):eaau0137. DOI:https://doi.org/10.1126/science.aau0137.CrossRefGoogle ScholarPubMed
Casana, Jesse 2014 Regional-Scale Archaeological Remote Sensing in the Age of Big Data: Automated Site Discovery vs. Brute Force Methods. Advances in Archaeological Practice 2:222233. DOI:https://doi.org/10.7183/2326-3768.2.3.222.CrossRefGoogle Scholar
Challis, Keith, Forlin, Paolo, and Kincey, Mark 2011 A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data. Archaeological Prospection 18:279289. DOI:https://doi.org/10.1002/arp.421.CrossRefGoogle Scholar
Chase, Arlen F., Reese-Taylor, Kathryn, Fernandez-Diaz, Juan C., and Chase, Diane Z. 2016 Progression and Issues in the Mesoamerican Geospatial Revolution: An Introduction. Advances in Archaeological Practice 4:219231. DOI:https://doi.org/10.7183/2326-3768.4.3.219.CrossRefGoogle Scholar
Chase, Adrian S. Z., and Weishampel, John 2016 Using Lidar and GIS to Investigate Water and Soil Management in the Agricultural Terracing at Caracol, Belize. Advances in Archaeological Practice 4:357370. DOI:https://doi.org/10.7183/2326-3768.4.3.357.CrossRefGoogle Scholar
Chaumet, Alain 2008 Webmapping, Archéologie et Géoportail. Archeologia e Calcolatori 19:7986.Google Scholar
Costa, Laurent 2015 Guide pour l'utilisation de l'interface Alpage: Manuel utilisateur. Unité Mixte de Recherche 7041 Archéologie et Science de l'Antiquité, Centre National de la Recherche Scientifique—Labex DynamiTe—Huma-Num, Nanterre, France.Google Scholar
Costa, Laurent 2016 Plateformes Géo-Collaboratives et Programmes de Recherches Historiques et Archéologiques. Vers de Nouvelles Pratiques de Construction des Savoirs Historiques. Electronic document, https://fr.slideshare.net/kmichel69/plateformes-gocollaboratives-et-programmes-de-recherches-historiques-et-archologiques-vers-de-nouvelles-pratiques-de-construction-des-savoirs-historiques-laurent-costa, accessed April 18, 2019.Google Scholar
Costa, Laurent, and Desachy, Bruno 2018 ArchéoFab—Archéologies Du Bassin Parisien. Culture et Recherche 137:3132.Google Scholar
Darras, Véronique, and Pereira, Grégory 2014 Mésomobile: Mobilités, Territoires et Mutations Sociopolitiques dans le Centre-Ouest de la Mésoamérique. Unpublished grant proposal. Manuscript on file, Agence National de La Recherche, Paris.Google Scholar
Dhonju, Hari Krishna, Xiao, Wen, Shakya, Bandana, Mills, Jon P., and Sarhosis, Vasilis 2017 Documentation of Heritage Structures through Geo-crowdsourcing and Web-Mapping. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W7(September):1721. DOI:https://doi.org/10.5194/isprs-archives-XLII-2-W7-17-2017.CrossRefGoogle Scholar
Djindjian, François 2008 Webmapping in the Historical and Archaeological Sciences. An Introduction. Archeologia e Calcolatori 19:916.Google Scholar
Ebert, Claire E., Hoggarth, Julie A., and Awe, Jaime J. 2016 Integrating Quantitative Lidar Analysis and Settlement Survey in the Belize River Valley. Advances in Archaeological Practice 4:284300. DOI:https://doi.org/10.7183/2326-3768.4.3.284.CrossRefGoogle Scholar
Elwood, Sarah 2010 Geographic Information Science: Emerging Research on the Societal Implications of the Geospatial Web. Progress in Human Geography 34:349357.CrossRefGoogle Scholar
Elwood, Sarah, Goodchild, Michael F., and Sui, Daniel Z. 2012 Researching Volunteered Geographic Information: Spatial Data, Geographic Research, and New Social Practice. Annals of the Association of American Geographers 102:571590.CrossRefGoogle Scholar
Evans, Damian H., Fletcher, Roland J., Pottier, Christophe, Chevance, Jean-Baptiste, Soutif, Dominique, Tan, Boun Suy, Im, Sokrithy, Ea, Darith, Tin, Tina, Kim, Samnang, Cromarty, Christopher, De Greef, Stéphane, Hanus, Kasper, Bâty, Pierre, Kuszinger, Robert, Shimoda, Ichita, and Boornazian, Glenn 2013 Uncovering Archaeological Landscapes at Angkor Using Lidar. Proceedings of the National Academy of Sciences 110(31):1259512600. DOI:https://doi.org/10.1073/pnas.1306539110.CrossRefGoogle ScholarPubMed
Faugère, Brigitte, Migeon, Gérald, and Puaux, Olivier 1984 Informe Mensual Sobre los Trabajos Arqueológicos de Campo Realizados por el CEMCA en el Estado de Michoacán entre el 6.3.84 y el 24.3.84. Unpublished technical report. Manuscript on file, Instituto Nacional de Antropología e Historia, Mexico City.Google Scholar
Fernandez-Diaz, Juan Carlos, Carter, William E., Glennie, Craig, Shrestha, Ramesh L., Pan, Zhigang, Ekhtari, Nima, Singhania, Abhinav, Hauser, Darren, and Sartori, Michael 2016 Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sensing 8(11):936. DOI:https://doi.org/10.3390/rs8110936.CrossRefGoogle Scholar
Fernandez-Diaz, Juan Carlos, Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2014 Now You See It … Now You Don't: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing 6(10):995110001. DOI:https://doi.org/10.3390/rs6109951.CrossRefGoogle Scholar
Fisher, Christopher T., Cohen, Anna S., Fernández-Diaz, Juan Carlos, and Leisz, Stephen J. 2017 The Application of Airborne Mapping LiDAR for the Documentation of Ancient Cities and Regions in Tropical Regions. Quaternary International 448:129138.CrossRefGoogle Scholar
Fisher, Christopher T., Fernández-Diaz, Juan Carlos, Cohen, Anna S., Cruz, Oscar Neil, Gonzáles, Alicia M., Leisz, Stephen J., Pezzutti, Florencia, Shrestha, Ramesh, and Carter, William 2016 Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras. PLOS ONE 11(8):e0159890. DOI:https://doi.org/10.1371/journal.pone.0159890.CrossRefGoogle ScholarPubMed
Forest, Marion 2010 Informe sobre los trabajos realizados entre marzo y mayo del 2010. Unpublished fellowship report. Manuscript on file, Secretaria de Relaciones Exteriores and Universidad Nacional Autónoma de Mexico, Mexico City.Google Scholar
Forest, Marion 2012 Les Centres Publics des Sites Urbains du Malpaís de Zacapu, Michoacán, Mexique: Exemples d'Espaces Hiérarchisés ou Hiérarchisants? In Les Marqueurs Archéologiques du Pouvoir, edited by Brunet, Olivier and Sauvin, Charles-Édouard, pp. 287308. Archeo.doct 4. Publications de la Sorbonne, Paris.CrossRefGoogle Scholar
Forest, Marion 2014 L'organisation sociospatiale des agglomérations urbaines du Malpaís de Zacapu, Michoacàn, Mexique [1250–1450 après J.-C.]. PhD dissertation, UFR Histoire de l'Art et Archéologie, Université Paris 1 Panthéon-Sorbonne, Paris.Google Scholar
Forest, Marion 2016 Urbanismo y Sociedad en Malpaís Prieto, Norte de Michoacán. Reflexiones acerca de la Estructura Espacial de un Sitio Prototarasco (1250–1450 d.C.). In Nuevas contribuciones al estudio del antiguo Michoacán, edited by Roskamp, Hans and Albiez-Wieck, Sarah, pp. 1950. Colegio de Michoacán, Zamora, Mexico.Google Scholar
Forest, Marion, Costa, Laurent, and Pereira, Grégory 2018 Le collectif face au big data: Interprétation partagée et retro-validation des données LiDAR du site d'El Infiernillo, Michoacán, Mexique. Digital Archaeology/Archéologies Numériques 2(1):115. DOI:10.21494/ISTE.OP.2018.0298.Google Scholar
Gattiglia, Gabriele 2015 Think Big about Data: Archaeology and the Big Data Challenge. Archäologische Informationen 38:113124.Google Scholar
Golden, Charles, Murtha, Timothy, Cook, Bruce, Shaffer, Derek S., Schroder, Whittaker, Hermitt, Elijah J., Firpi, Omar Alcover, and Scherer, Andrew K. 2016 Reanalyzing Environmental Lidar Data for Archaeology: Mesoamerican Applications and Implications. Journal of Archaeological Science: Reports 9:293308.CrossRefGoogle Scholar
Guyot, Alexandre, Hubert-Moy, Laurence, and Lorho, Thierry 2018 Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-scale Approach and Machine Learning Techniques. Remote Sensing 10(2):225. DOI:https://doi.org/10.3390/rs10020225.CrossRefGoogle Scholar
Haklay, Muki, Singleton, Alex, and Parker, Chris 2008 Web Mapping 2.0: The Neogeography of the GeoWeb. Geography Compass 2:20112039. DOI:https://doi.org/10.1111/j.1749-8198.2008.00167.x.CrossRefGoogle Scholar
Henry, Edward R., Shields, Carl R., and Kidder, Tristram R. 2019 Mapping the Adena-Hopewell Landscape in the Middle Ohio Valley, USA: Multi-scalar Approaches to LiDAR-Derived Imagery from Central Kentucky. Journal of Archaeological Method and Theory 26:1513. DOI:https://doi.org/10.1007/s10816-019-09420-2.CrossRefGoogle Scholar
Hutson, Scott R. 2015 Adapting LiDAR Data for Regional Variation in the Tropics: A Case Study from the Northern Maya Lowlands. Journal of Archaeological Science: Reports 4:252263.CrossRefGoogle Scholar
Jadot, Elsa 2016 Productions Céramiques et Mobilités dans la Région Tarasque de Zacapu (Michoacán, Mexique): Continuités et Ruptures Techniques entre 850 et 1450 apr. J.-C. PhD dissertation, UFR Histoire de l'Art et Archéologie, Université Paris 1 Panthéon-Sorbonne, Paris.Google Scholar
Jasło, Poland, Pilszyk, Joanna, Szmyd, Piotr, and the Carpathian Troy Open-Air Museum at Trzcinica, Poland 2017 Use of LIDAR ISOK Data Available with the Use of Geoportal 2 Website for Discovering Archaeological Sites. Analecta Archaeologica Ressoviensia 12:169176. DOI:https://doi.org/10.15584/anarres.2017.12.10.Google Scholar
Klassen, Sarah, Weed, Jonathan, and Evans, Damian 2018 Semi-supervised Machine Learning Approaches for Predicting the Chronology of Archaeological Sites: A Case Study of Temples from Medieval Angkor, Cambodia. PLOS ONE 13(11):e0205649. DOI:https://doi.org/10.1371/journal.pone.0205649.CrossRefGoogle ScholarPubMed
Knoth, Christian, Slimani, Sofian, Appel, Marius, and Pebesma, Edzer 2018 Combining Automatic and Manual Image Analysis in a Web-Mapping Application for Collaborative Conflict Damage Assessment. Applied Geography 97:2534. DOI:https://doi.org/10.1016/j.apgeog.2018.05.016.CrossRefGoogle Scholar
Kokalj, Žiga, and Hesse, Ralf 2017 Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice. Prostor, Kraj, Čas Vol. 14. Založba ZRC, Ljubljana, Slovenia.CrossRefGoogle Scholar
Lambers, Karsten, Verschoof-van der Vaart, Wouter B., and Bourgeois, Quentin P. J. 2019 Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sensing 11(7):794. DOI:https://doi.org/10.3390/rs11070794.CrossRefGoogle Scholar
Ludemann, Thomas 2012 Airborne Laser Scanning of Historical Wood Charcoal Production Sites—A New Tool of Kiln Site Anthracology at the Landscape Level. Saguntum: Papeles del Laboratorio de Arqueología de Valencia 13:247252.Google Scholar
Magnoni, Aline, Stanton, Travis W., Barth, Nicolas, Fernandez-Diaz, Juan Carlos, Osorio León, José Francisco, Ruíz, Francisco Pérez, and Wheeler, Jessica A. 2016 Detection Thresholds of Archaeological Features in Airborne Lidar Data from Central Yucatán. Advances in Archaeological Practice 4:232248. DOI:https://doi.org/10.7183/2326-3768.4.3.232.CrossRefGoogle Scholar
McCoy, Mark D. 2017 Geospatial Big Data and Archaeology: Prospects and Problems Too Great to Ignore. In “Archaeological GIS Today: Persistent Challenges, Pushing Old Boundaries, and Exploring New Horizons,” edited by Meghan C.L. Howey and Marieka Brouwer Burg, special issue, Journal of Archaeological Science 84:7494. DOI:https://doi.org/10.1016/j.jas.2017.06.003.CrossRefGoogle Scholar
McCoy, Mark D., Asner, Gregory P., and Graves, Michael W. 2011 Airborne Lidar Survey of Irrigated Agricultural Landscapes: An Application of the Slope Contrast Method. Journal of Archaeological Science 38:21412154.CrossRefGoogle Scholar
Michelet, Dominique 1984 Las Milpillas (Mich. 95). Unpublished 1/1000 topographic map. Document on file, Unité Mixte de Recherche 8096 Archéologie des Amériques, Centre National de la Recherche Scientifique, Nanterre, France.Google Scholar
Michelet, Dominique 1998 Topografía y Prospección Sistemática de los Grandes Asentamientos del Malpaís de Zacapu: Claves para un Acercamiento a las Realidades Sociopolíticas. In Génesis, culturas y espacios en Michoacán, edited by Darras, Véronique, pp. 4759. Centro de Estudios Mexicanos y Centro-Americanos, Mexico City.CrossRefGoogle Scholar
Michelet, Dominique 2000 Yácatas y otras estructuras ceremoniales tarascas en el Malpaís de Zacapu, Michoacán. In Arqueología, historia y antropología: In memoriam, José Luis Lorenzo Bautista, edited by Litvak, Jaime and Mirambell, Lorena, pp. 117137. Colección Científica, Instituto Nacional de Antropología e Historia, Mexico City.Google Scholar
Michelet, Dominique 2008 Vivir diferentemente: Los sitios de la fase Milpillas (1250–1450 d.C.) en el Malpaís de Zacapu (Michoacán). In El urbanismo en Mesoamérica/Urbanism in Mesoamerica, Vol. 2, edited by Mastache, Alba Guadalupe, Cobean, Robert H., Cook, Angel García, and Hirth, Kenneth G., pp. 593620. Pennsylvania State University Press, University Park; Instituto Nacional de Antropología e Historia, Mexico City.Google Scholar
Migeon, Gérald 1990 Archéologie en pays tarasque: Structure de l'habitat et ethnopréhistoire des habitations tarasques de la région de Zacapu (Michoacán, Mexique) au Postclassique Récent. PhD dissertation, UFR Histoire de l'Art et Archéologie, Université Paris 1 Panthéon-Sorbonne, Paris.Google Scholar
Migeon, Gérald 2016 Patrones de asentamiento del Malpaís de Zacapu (Michoacán, México) y sus alrededores en el Posclásico. Paris Monographs in American Archaeology. British Archaeological Reports, Archaeopress, Oxford.Google Scholar
Moscati, Paola 2008 Webmapping in the Etruscan Landscape. Archeologia e Calcolatori 19:1730.Google Scholar
Opitz, Rachel S., and Cowley, David C. (editors) 2013 Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation. Occasional Publication of the Aerial Archaeology Research Group No. 5. Oxbow Books, Oxford.Google Scholar
Opitz, Rachel S., Ryzewski, Krysta, Cherry, John F., and Moloney, Brenna 2015 Using Airborne LiDAR Survey to Explore Historic-Era Archaeological Landscapes of Montserrat in the Eastern Caribbean. Journal of Field Archaeology 40:523541. DOI:https://doi.org/10.1179/2042458215Y.0000000016.CrossRefGoogle Scholar
Palmer, Rog 2013 Reading Aerial Images. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data, and Ground Observation, edited by Opitz, Rachel S. and Cowley, David C. pp. 7687. Occasional Publication of the Aerial Archaeology Research Group No. 5. Oxbow Books, Oxford.CrossRefGoogle Scholar
Pereira, Grégory, and Forest, Marion 2010 Projet Uacúsecha: Aux origines du royaume tarasque: Rapport d'activités sur les opérations menées en mars et avril 2010. Technical report. Manuscript on file, Ministère des Affaires Etrangères et Européennes, Paris.Google Scholar
Pereira, Grégory, and Forest, Marion 2011 Proyecto Uacúsecha: Identificación y Utilización de los Espacios del Sitio del Malpaís Prieto, Michoacán, México, Temporada 3 (Febrero–Mayo 2010). Technical report. Manuscript on file, Instituto de Antropología e Historia, Mexico City.Google Scholar
Pereira, Grégory, Michelet, Dominique, Dorison, Antoine, Faugère, Brigitte, Quezada, Osiris, Lefebvre, Karine, Forest, Marion, Medina, Isabelle, Barrientos, Isaac, Goudiaby, Hemmamuthé, Barba, Luis, Blanca, Jorge, and Gillot, Céline 2016 Proyecto Uacúsecha: Informe técnico sobre los trabajos de campo llevados a cabo en el Malpaís de Zacapu y en áreas vecinas, Michoacán, Temporada 8 (2015–2016). Technical report. Manuscript on file, Instituto de Antropología e Historia, Mexico City.Google Scholar
Pollard, Helen P. 2012 The Tarascan Empire: Postclassic Social Complexity in West Mexico. In The Oxford Handbook of Mesoamerican Archaeology, edited by Nichols, Deborah L. and Pool, Christopher A., pp. 434448. Oxford University Press, New York.Google Scholar
Prufer, Keith M., Thompson, Amy E., and Kennett, Douglas J. 2015 Evaluating Airborne LiDAR for Detecting Settlements and Modified Landscapes in Disturbed Tropical Environments at Uxbenká, Belize. Journal of Archaeological Science 57:113.CrossRefGoogle Scholar
Puaux, Olivier 1989 Les pratiques funéraires tarasques, approche archéologique et ethnohistorique [Zacapu]. PhD dissertation, UFR Histoire de l'Art et Archéologie, Université Paris 1 Panthéon-Sorbonne, Paris.Google Scholar
Quintus, Seth, Clark, Jeffrey T., Day, Stephanie S., and Schwert, Donald P. 2015 Investigating Regional Patterning in Archaeological Remains by Pairing Extensive Survey with a Lidar Dataset: The Case of the Manu'a Group, American Samoa. Journal of Archaeological Science: Reports 2:677687. DOI:https://doi.org/10.1016/j.jasrep.2014.11.010.CrossRefGoogle Scholar
Quintus, Seth, Day, Stephanie S., and Smith, Nathan J. 2017 The Efficacy and Analytical Importance of Manual Feature Extraction Using Lidar Datasets. Advances in Archaeological Practice 5:351364. DOI:https://doi.org/10.1017/aap.2017.13.CrossRefGoogle Scholar
Reese-Taylor, Kathryn, Hernández, Armando Anaya, Esquivel, F.C.Atasta Flores, Monteleone, Kelly, Uriarte, Alejandro, Carr, Christopher, Acuña, Helga Geovannini, Fernandez-Diaz, Juan Carlos, Peuramaki-Brown, Meaghan, and Dunning, Nicholas 2016 Boots on the Ground at Yaxnohcah: Ground-Truthing Lidar in a Complex Tropical Landscape. Advances in Archaeological Practice 4:314338. DOI:https://doi.org/10.7183/2326-3768.4.3.314.CrossRefGoogle Scholar
Renneville, Marc, and Pouyllau, Stéphane 2013 Huma-Num. La Nouvelle Très Grande Infrastructure de Recherche Pour Les Humanités Numériques. La Lettre de I'INSHS, September:2325.Google Scholar
Reyes-Guzmán, Nanci, Siebe, Claus, Chevrel, Magdalena Oryaëlle, Guilbaud, Marie-Noëlle, Salinas, Sergio, and Layer, Paul 2018 Geology and Radiometric Dating of Quaternary Monogenetic Volcanism in the Western Zacapu Lacustrine Basin (Michoacán, México): Implications for Archeology and Future Hazard Evaluations. Bulletin of Volcanology 80(2):18.CrossRefGoogle Scholar
Rosenswig, Robert M., López-Torrijos, Ricardo, and Antonelli, Caroline E. 2015 Lidar Data and the Izapa Polity: New Results and Methodological Issues from Tropical Mesoamerica. Archaeological and Anthropological Sciences 7(4):487504.CrossRefGoogle Scholar
Schindling, James, and Gibbes, Cerian 2014 LiDAR as a Tool for Archaeological Research: A Case Study. Archaeological and Anthropological Sciences 6:411423. DOI:https://doi.org/10.1007/s12520-014-0178-3.CrossRefGoogle Scholar
Sevara, Christopher, Pregesbauer, Michael, Doneus, Michael, Verhoeven, Geert, and Trinks, Immo 2016 Pixel versus Object—A Comparison of Strategies for the Semi-automated Mapping of Archaeological Features Using Airborne Laser Scanning Data. Journal of Archaeological Science: Reports 5:485498.CrossRefGoogle Scholar
Toumazet, Jean-Pierre, Vautier, Franck, Roussel, Erwan, and Dousteyssier, Bertrand 2017 Automatic Detection of Complex Archaeological Grazing Structures Using Airborne Laser Scanning Data. Journal of Archaeological Science: Reports 12:569579.CrossRefGoogle Scholar
Verschoof-van der Vaart, Wouter Baernd, and Lambers, Karsten 2019 Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. Journal of Computer Applications in Archaeology 2:3140. DOI:https://doi.org/10.5334/jcaa.32.CrossRefGoogle Scholar
von Schwerin, Jennifer, Richards-Rissetto, Heather, Remondino, Fabio, Spera, Maria Grazia, Auer, Michael, Billen, Nicolas, Loos, Lukas, Stelson, Laura, and Reindel, Markus 2016 Airborne LiDAR Acquisition, Post-processing and Accuracy-Checking for a 3D WebGIS of Copan, Honduras. Journal of Archaeological Science: Reports 5(February):85104. DOI:https://doi.org/10.1016/j.jasrep.2015.11.005.CrossRefGoogle Scholar
Yates, Donna 2018 Crowdsourcing Antiquities Crime Fighting: A Review of GlobalXplorer°. Advances in Archaeological Practice 6:173178. DOI:https://doi.org/10.1017/aap.2018.8.CrossRefGoogle Scholar
Zimmer, Clara 2016 Réseau viaire ou parcellaire? l'Apport du LiDAR à l'analyse des structures linéaires du site d'El Infiernillo, Michoacán, Mexique (1250–1450 apr. J.C.). Master's thesis, UFR Histoire de l'Art et Archéologie, Université Paris 1 Panthéon-Sorbonne, Paris.Google Scholar