Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:30:16.006Z Has data issue: false hasContentIssue false

SfM Photogrammetric Field Methods for Historic Burial Excavations: The Case of Bethel Cemetery

Published online by Cambridge University Press:  29 May 2020

Alex Elvis Badillo*
Affiliation:
Department of Earth and Environmental Systems, Indiana State University, Science Building 159, 600 Chestnut Street, Terre Haute, IN47809, USA
Joshua A. Myers
Affiliation:
Department of Anthropology, Indiana University and Purdue University, Indianapolis, Cavanaugh Hall 441, 425 University Boulevard, Indianapolis, IN46202, USA
Ryan J. Peterson
Affiliation:
Cardno, 3901 Industrial Boulevard, Indianapolis, IN46254, USA
*
([email protected], corresponding author)

Abstract

In this article, we present a unique case study in Indianapolis, Indiana, where cultural resource management (CRM) archaeologists, alongside various university archaeologists, tested the use of SfM photogrammetry to effectively replace traditional archaeological methods of mapping and documentation during the excavation of over 500 historic burials. This project was designed with the intention of using SfM photogrammetry for 3D mapping and documentation from its inception, implementing formal procedures and protocols for data collection creating a standard workflow. To our knowledge, this is the first integrated use of SfM at this scale on an archaeological project in Indiana. By the close of fieldwork, over 300 burials had been digitally recorded, and measurable 3D models were generated. We found that the standard photogrammetry workflow implemented for single context excavation was largely successful. First, we outline the data collection process for 3D mapping of single-context excavations at Bethel Cemetery. This is followed by a description of the problems encountered during data collection and the ways the photogrammetry team adapted to variability in field environments for photocapture. Finally, we recommend the adoption of these methods by practitioners/academics as standard practice in the archaeological excavation of human remains.

En este artículo, los autores presentan un estudio único en Indianápolis, Indiana, donde los arqueólogos de una empresa de gestión de recursos culturales junto con varios arqueólogos universitarios probaron el uso de fotogrametría para reemplazar efectivamente los métodos arqueológicos tradicionales de mapeo y documentación durante la excavación de más de 500 entierros históricos. Este proyecto fue diseñado con la intención de utilizar fotogrametría para la documentación 3D desde su inicio, implementando procedimientos y protocolos formales para la recopilación de datos creando un flujo de trabajo estándar. Hasta donde sabemos, este es el primer uso integrado de fotogrametría a esta escala en un proyecto arqueológico en Indiana. Al final del trabajo de campo, más de 300 entierros habían sido grabados digitalmente y se generaron modelos 3D que son medibles. Los autores encontraron que los métodos estándar de recopilación de datos fotogrametría implementados para la excavación de este tipo tuvieron un gran éxito. Primero, describimos el proceso de recolección de datos para el mapeo 3D de excavaciones en el cementerio de Bethel. Esto es seguido por una descripción de los problemas encontrados durante la recopilación de datos y cómo el equipo de fotogrametría se adaptó a la variabilidad en los entornos de campo para la fotocaptura. Finalmente, los autores recomiendan la adopción de estos métodos por profesionales / académicos como práctica estándar en la excavación arqueológica de restos humanos.

Type
Articles
Copyright
Copyright 2020 © Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article describes a workflow for the documentation of burials, but no images of human remains are published in this article. Prior to publication, the figures in the manuscript were carefully reviewed by the Society for American Archaeology president and president-elect.

References

REFERENCES CITED

Agisoft LLC 2018 Agisoft PhotoScan User Manual: Professional Edition, Version 1.4, Agisoft LLC, Saint Petersburg, Russia.Google Scholar
Badillo, Alex Elvis 2018 Bethel Cemetery Project: Procedures and Protocols for Structure from Motion Photogrammetry on Historic Burials. Electronic document, The Digital Archaeological Record (tDAR). DOI:10.6067/XCV8455106.CrossRefGoogle Scholar
Baier, Waltraud, and Rando, Carolyn 2016 Developing the Use of Structure-from-Motion in Mass Grave Documentation. Forensic Science International 261:1925.CrossRefGoogle ScholarPubMed
Cultural Heritage Imaging 2015 Guidelines for Calibrated Scale Bar Placement and Processing, Version 2.0, Cultural Heritage Imaging, San Francisco, California. Electronic document, https://www.agisoft.com/pdf/tips_and_tricks/CHI_Calibrated_Scale_Bar_Placement_and_Processing.pdf, accessed May 8, 2018.Google Scholar
De Reu, Jeroen, De Smedt, Philippe, Herremans, Davy, Van Meirvenne, Marc, Laloo, Pieter and De Clercq, Wim 2014 On Introducing an Image-Based 3D Reconstruction Method in Archaeological Excavation Practice. Journal of Archaeological Science 41:251262.CrossRefGoogle Scholar
De Reu, Jeroen, Plets, Gertjan, Verhoeven, Geert, De Smedt, Philippe, Bats, Machteld, Cherretté, Bart, De Maeyer, Wouter, Deconynck, Jasper, Herremans, Davy, Laloo, Pieter, Van Meirvenne, Marc, and De Clercq, Wim 2013 Towards a Three-Dimensional Cost-Effective Registration of the Archaeological Heritage. Journal of Archaeological Science 40:11081121.CrossRefGoogle Scholar
Douglass, Matthew, Lin, Sam, and Chodoronek, Michael 2015 The Application of 3D Photogrammetry for In-Field Documentation of Archaeological Features. Advances in Archaeological Practice 3:136152.CrossRefGoogle Scholar
Evin, Allowen, Souter, Thibaud, Hulme-Beaman, Ardern, Ameen, Carly, Allen, Richard, Viacava, Pietro, Larson, Greger, Cucchi, Thomas, and Dobney, Keith 2016 The Use of Close-Range Photogrammetry in Zooarchaeology: Creating Accurate 3D Models of Wolf Crania to Study Dog Domestication. Journal of Archaeological Science: Reports 9:8793.CrossRefGoogle Scholar
Geurds, Alexander, and Aguilar, Juan, and McKendrick, Fiona 2018 Prehistoric Stone Sculptures at the Gregorio Aguilar Barea Museum, Nicaragua: Photogrammetry Practices and Digital Immersive Virtual Environment Applications for Archaeology. In Digital Imaging of Artefacts: Developments in Methods and Aims, edited by Kelley, Kate and Wood, Rachel K. L., pp. 119144. Archaeopress, Oxford.Google Scholar
Green, Susie, Bevan, Andrew, and Shapland, Michael 2014 A Comparative Assessment of Structure from Motion Methods for Archaeological Research. Journal of Archaeological Science 46:173181.CrossRefGoogle Scholar
Grob, Kaye, Parsell, Veronica, Simpson, Duane, and Peterson, Ryan J. 2017 Geophysical Investigation and Documentation of the Bethel Cemetery, Marion County, Indiana. Report submitted by Cardno for the Indianapolis Airport Authority, August 2017. Tracking number J177306500.Google Scholar
Koenig, Charles W., Willis, Mark D., and Black, Stephen L. 2017 Beyond the Square Hole: Application of Structure from Motion Photogrammetry to Archaeological Excavation. Advances in Archaeological Practice 5:5470.CrossRefGoogle Scholar
Matthew, D. Howland, Falko, Kuester, and Thomas, E. Levy 2014 Structure from Motion: Twenty-First Century Field Recording with 3D Technology. Near Eastern Archaeology 77:187191.Google Scholar
Morgan, Brianne, Ford, Andrew L. J., and Smith, Martin J. 2019 Standard Methods for Creating Digital Skeletal Models Using Structure-from-Motion Photogrammetry. American Journal of Physical Anthropology 169:152160.CrossRefGoogle ScholarPubMed
Nadel, Dani, Filin, Sagi, Rosenberg, Danny, and Miller, Vera 2015 Prehistoric Bedrock Features: Recent Advances in 3D Characterization and Geometrical Analyses. Journal of Archaeological Science 53:331344.CrossRefGoogle Scholar
Novotny, Anna C. 2019 Implementing Photogrammetry in Three Bioarchaeological Contexts: Steps for In-Field Documentation. Advances in Archaeological Practice 7:8796.CrossRefGoogle Scholar
Olson, Brandon R., Placchetti, Ryan A., Quartermaine, Jamie, and Killebrew, Ann E. 2013 The Tel Akko Total Archaeology Project (Akko, Israel): Assessing the Suitability of Multi-Scale 3D Field Recording in Archaeology. Journal of Field Archaeology 38:244262.CrossRefGoogle Scholar
Porter, Samantha Thi, Roussel, Morgan, and Soressi, Marie 2016 A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field: Lithic Examples from the Early Upper Paleolithic Sequence of Les Cottés (France). Advances in Archaeological Practice 4:7186.CrossRefGoogle Scholar
Sapirstein, Philip 2016 Accurate Measurement with Photogrammetry at Large Sites. Journal of Archaeological Science 66:137145.CrossRefGoogle Scholar
Sapirstein, Philip, and Murray, Sarah 2017 Establishing Best Practices for Photogrammetric Recording during Archaeological Fieldwork. Journal of Field Archaeology 42:337350.CrossRefGoogle Scholar
Selden, Robert Z. Jr. 2015 Using Photogrammetry to Document, Analyze, and Reverse-Engineer Grave Markers. Technical Briefs in Historical Archaeology 9:4956.Google Scholar
Ulguim, Priscilla F. 2017 Recording in Situ Human Remains in Three Dimensions: Applying Digital Image-Based Modeling. In Human Remains: Another Dimension, edited by Errickson, David and Thompson, Timothy, pp. 7192. Academic Press, London.CrossRefGoogle Scholar
Vera, Miller, Sagi, Filin, Danny, Rosenberg, and Dani, Nadel 2014 3D Characterization of Bedrock Features: A Natufian Case Study. Near Eastern Archaeology 77:214218.Google Scholar
Supplementary material: PDF

Badillo et al. supplementary material

Badillo et al. supplementary material

Download Badillo et al. supplementary material(PDF)
PDF 3 MB