Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T17:36:35.341Z Has data issue: false hasContentIssue false

The Pocket Penetrometer

An Onsite Method for Discerning the Presence of Earthen House Floors and Other Trampled Surfaces

Published online by Cambridge University Press:  16 January 2017

Anthony P. Graesch
Affiliation:
Department of Anthropology, Connecticut College, 270 Mohegan Avenue, New London, CT 06320
Sarah E. Shankel
Affiliation:
Department of Anthropology, Connecticut College, 270 Mohegan Avenue, New London, CT 06320
David M. Schaepe
Affiliation:
Stó:lō Research and Resource Management Centre, Building 10, 7201 Vedder Road, Chilliwack, BC, Canada V2R 4G5

Abstract

The identification of earthen house floors or living surfaces during archaeological field investigations can be hampered by the scale of excavation, variable fieldworker experiences, and any number of site formation processes. Furthermore, although time- and context-sensitive sampling protocols (e.g., those required of macrobotanical and microartifact data collection) rely on in-the-moment identifications of floors, strong empirical evidence for the presence of house floors often comes well after the field season has concluded. Pocket penetrometers—inexpensive instruments that measure the compaction strength of soil—can lend empirical support to decisions about sampling procedures during onsite investigations. In this study, we present findings from the analysis of 4,463 penetrometer readings recorded during the excavation of residential and non-residential architecture at Welqámex, a Stó:lō-Coast Salish settlement in southwestern British Columbia. We show how pocket penetrometer data reveal quantifiable differences in the compaction of floors and other cultural deposits. We argue that compaction measurements can provide an additional line of data (ratio scale) to affirm or challenge onsite interpretations of stratigraphy based on other tactile and observational data, particularly as such interpretations pertain to surfaces expected to have been exposed to recurrent foot traffic

La identificación de pisos apisonados en casas o de suelos puede obstaculizarse durante las investigaciones arqueológicas por la escala de la excavación, por el grado de experiencia del trabajador en el campo y por cualesquiera de los procesos de formación del sitio. Además, aunque los protocolos de muestreo sensibles al tiempo y al contexto (por ejemplo, aquellos que se requieren en la colección de datos macro-botánicos y de micro-artefactos) dependen del momento en el que se identifiquen los pisos, mas la evidencia empírica contundente para determinar la presencia de pisos en casas, a menudo se presenta mucho tiempo después de haber concluido la temporada de campo. Los penetrómetros de bolsillo—instrumentos económicos que miden la fuerza de compactación del suelo—pueden proporcionar el soporte empírico para sustentar los procedimientos de muestreo durtante las investigaciones en el campo. En este estudio, presentamos los resultados del análisis de 4.463 lecturas realizadas con el penetrómetro y registradas durante la excavación de arquitectura residencial y no-residencial en Welqámex, un asentamiento Stó:lō-Coast Salish en el suroeste de Columbia Británica. Nosostros mostramos como los datos del penetrómetro de bolsillo revelan diferencias cuantificables en la compactación de los pisos y de otros depósitos culturales. Nosotros argumentamos que las medidas de compactación pueden proveer una serie adicional de datos (escala de rango) para afirmar u objetar las interpretaciones de la estratigrafía realizadas en el sitio basadas en otros datos tangibles o en datos observados, particularmente, cuando las interpretaciones correspondan a superficies en las que se asume estuvieron expuestas constantemente al tráfico peatonal.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Araujo, , Mello, Astolfo G., and Carlos, Marcelino José 2003 The Role of Armadillos in the Movement of Archaeological Materials: An Experimental Approach. Geoarchaeology: An International Journal 18:433460.CrossRefGoogle Scholar
Banerjea, Rowena Y., Bell, Martin, Matthews, Wendy, and Brown, Alex 2013 Applications of Micromorphology to Understanding Activity Areas and Site Formation Processes in Experimental Hut Floors. Archaeological and Anthropological Sciences. Electronic document, http://link.springer.com/article/10.1007%2Fs12520-013-0160-5, accessed December 26, 2014.Google Scholar
Bresson, L.M., and Zambaux, C. 1990 Micromorphological Study of Compaction Induced by Mechanical Stress for a Dystrochreptic Fragiudalf. In Soil Micromorpology: A Basic and Applied Science 19, edited by Douglas, L. A., pp. 3340. Elsevier, Amsterdam.Google Scholar
Burrow, Ian, Liebeknecht, William B., Harshbarger, Patrick, Haley, Alison, and Hunter Research Inc. 2014 Reedy Island Cart Road Site 4 [7NC-F-153], U.S. Route 301 Project, St. Georges Hundred, New Castle County, Delaware: Phase II Archaeological Investigations and Alternative Mitigation: A Research Program to Test the Cart Road Predictive Model through Geophysical Survey, Lidar Image Analysis, Soil Compaction Studies, Topographic Mapping, and Archaeological Excavation. Report prepared for Delaware Department of Transportation. Electronic document, http://deldot.gov/archaeology/us301/cart_road/, accessed July 14, 2014.Google Scholar
Cessford, Craig 2003 Microartifactual Floor Patterning: The Case at Çatalhöyük. Assemblage: The Sheffield Graduate Journal of Archaeology 7. Electronic document, http://www.assemblage.group.shef.ac.uk/issue7/cessford.html, accessed February 11, 2014.Google Scholar
Clayton, C.R.I., Matthews, M.C., and Simons, N.E. 1995 Site Investigation: A Handbook for Engineers. Blackwell Science, Oxford.Google Scholar
Davidson, Donald A., Carter, Stephen P., and Quine, Timothy A. 1992 An Evaluation of Micromorphology as an Aid to Archaeological Interpretation. Geoarchaeology 7:5565.CrossRefGoogle Scholar
Fritz, G. J., Adams, K. R., Rice, G. E., and Czarzasty, J. L. 2009 Evidence for Domesticated Amaranth (Amaranthus) from a Sedentary Period Hohokam House Floor at Las Canopas. Kiva 75:393418.CrossRefGoogle Scholar
Thierry, , Courty, Marie-Agnès, Mathews, Wendy, and Wattez, Julia 1993 Sedimentary Formation Processes of Occupation Surfaces. In Formation Processes in Archaeological Context, edited by Goldberg, P. and Nash, D. T., pp. 149163. Prehistory Press, Madison.Google Scholar
Gifford-Gonzalez, Diane P., Damrosch, David B., Damrosch, Debra R., John, Pryor, and Thunen, Robert L. 1985 The Third Dimension in Site Structure: An Experiment in Trampling and Vertical Dispersal. American Antiquity 50:803818.CrossRefGoogle Scholar
Graesch, Anthony P. 2006 Archaeological and Ethnoarchaeological Investigations of Households and Perspectives on a Coast Salish Historic Village in British Columbia. Unpublished dissertation, Department of Anthropology, University of California, Los Angles.Google Scholar
Graesch, Anthony P. 2007 Modeling Ground Slate Knife Production and Implications for the Study of Household Labor Contributions to Salmon Fishing on the Pacific Northwest Coast. Journal of Anthropological Archaeology 26:576606.CrossRefGoogle Scholar
Graesch, Anthony P. 2009 Fieldworker Experience and Single-Episode Screening as Sources of Data Recovery Bias in Archaeology: A Case Study from the Central Pacific Northwest Coast. American Antiquity 74:759779.CrossRefGoogle Scholar
Graesch, Anthony P., Julienne, Bernard, and Noah, Anna 2010 A Cross-Cultural Study of Colonialism and Indigenous Foodways in Western North America. In Across the Great Divide: Continuity and Change in Native North American Societies, A.D. 1400–1900, edited by Scheiber, L. and Mitchell, M., pp. 212238. University of Arizona Press, Tucson.Google Scholar
Graesch, Anthony P., Tianna, DiMare, Schachner, Gregson, Schaepe, David M., and Dallen, John (Jay) 2014 Thermally Modified Rock: The Experimental Study of “Fire-Cracked” Byproducts of Hot Rock Cooking. North American Archaeologist 35:167200.CrossRefGoogle Scholar
Gunther, Erna 1927 Klallam Ethnography. University of Washington Press, Seattle.Google Scholar
Hayden, Brian 1997 The Pithouses of Keatley Creek. Harcourt Brace College Publishers, Fort Worth.Google Scholar
Hodgson, John Michael 1978 Soil Sampling and Soil Description. Clarendon Press, Oxford.Google Scholar
LaMotta, Vincent M., and Schiffer, Michael B. 1999 Formation Processes of House Floor Assemblages. In The Archaeology of Household Activities, edited by Allison, P. M., pp. 1929. Routledge, New York.Google Scholar
Lepofsky, Dana, Schaepe, David M., Graesch, Anthony P., Lenert, Michael, Ormerod, Patricia, Carlson, Keith, Arnold, Jeanne E., Blake, Michael, Moore, Pat, and Clague, John 2009 Exploring Stó:lō-Coast Salish Interactions and Identity in Ancient Houses and Settlements in the Fraser Valley, British Columbia. American Antiquity 74:595626.CrossRefGoogle Scholar
Manzanilla, Linda, and Barba, Luis 1990 The Study of Activities in Classic Households: Two Cases from Coba and Teotihuacan. Ancient Mesoamerica 1:4149.CrossRefGoogle Scholar
McCafferty, Geoffrey G. 2008 Domestic Practice in Postclassic Santa Isabel, Nicaragua. Latin American Antiquity 19:6482.CrossRefGoogle Scholar
Middleton, William D., and Price, T. Douglas 1996 Identification of Activity Areas by Multi-Element Characterization of Sediments from Modern and Archaeological House Floors Using Inductively Coupled Plasma Atomic Emission Spectroscopy. Journal of Archaeological Science 23:673687.CrossRefGoogle Scholar
Mijares, , Armand, Salvador B. and Lewis, Helen A. 2009 Cave Sites in Northeastern Luzon, Philippines: A Preliminary Soil Micromorphological Study. Asian Perspectives 48:98118.CrossRefGoogle Scholar
Milek, Karen 2012 Floor Formation Processes and the Interpretation of Site Activity Areas: An Ethnoarchaeological Study of Turf Buildings at Thverá, Northeast Iceland. Journal of Anthropological Archaeology 31:119137.CrossRefGoogle Scholar
Miller, Christopher E., Goldberg, Paul, and Berna, Francesco 2013 Geoarchaeological Investigations at Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science 40:34323452.CrossRefGoogle Scholar
Rosen, , Miller, Arlene 1989 Ancient Town and City Sites: A View from the Microscope. American Antiquity 54:564578.CrossRefGoogle Scholar
Schaepe, David M. 2009 Pre-Colonial Stó:lō Community Organization: An Archaeological Perspective. Unpublished Ph.D. dissertation. University of British Columbia, Department of Anthropology, Vancouver.Google Scholar
Schaepe, David M., McHalsie, Albert (Sonny), Carlson, Keith Thor, and Ormerod, Patricia 2001 Changing Households, Changing Houses. In A Stó:lō-Coast Salish Historical Atlas, edited by Carlson, K. T., pp. 4047, Douglas & McIntyre, Vancouver, Canada.Google Scholar
Schaepe, David M., Dojack, Lisa, Brendzy, Cara, Formosa, Sue, and Graesch, Anthony P. 2015 Coqualeetza Longhouse Archaeology Study. Report on file at the Stó:lō Research and Resource Management Centre, Chilliwack, British Columbia.Google Scholar
Schiffer, Michael B. 1987 Formation Processes of the Archaeological Record. University of Utah Press, Salt Lake City.Google Scholar
Sherwood, Sarah C., Simek, Jan F., and Polhemus, Richard R. 1995 Artifact Size and Spatial Process: Macro- and Microartifacts in a Mississippian House. Geoarchaeology: An International Journal 10:429455.CrossRefGoogle Scholar
Springer, Chris, and Lepofsky, Dana 2011 Pithouses and People: Social Identity and Pithouses in the Harrison River Valley of Southwestern British Columbia. Canadian Journal of Archaeology 35:1854.Google Scholar
Sullivan, K. A., and Kealhofer, L. 2004 Identifying Activity Areas in Archaeological Soils from a Colonial Virginia House Lot Using Phytolith Analysis and Soil Chemistry. Journal of Archaeological Science 31:16591673.CrossRefGoogle Scholar
Terry, Richard E., Fernandex, Fabian G., Parnell, J. Jacob, and Inomata, Takeshi 2004 The Story in Floors: Chemical Signatures of Ancient and Modern Maya Activities at Aguateca, Guatemala. Journal of Archaeological Science 31:12371250.CrossRefGoogle Scholar
Walkington, Helen 2010 Soil Science Applications in Archaeological Contexts: A Review of Key Challenges. Earth-Science Reviews 103:122134.CrossRefGoogle Scholar
Wells, E. Christian, Terry, Richard E., Parnell, J. Jacob, Hardin, Perry J., Jackson, Mark W., and Houston, Stephen D. 2000 Chemical Analyses of Ancient Anthrosols in Residential Areas at Piedras Negras, Guatemala. Journal of Archaeological Science 27:449462.CrossRefGoogle Scholar