Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:20:57.423Z Has data issue: false hasContentIssue false

The Efficacy and Analytical Importance of Manual Feature Extraction Using Lidar Datasets

Published online by Cambridge University Press:  23 August 2017

Seth Quintus
Affiliation:
Department of Anthropology, University of Hawai'i at Mānoa, Honolulu, HI
Stephanie S. Day
Affiliation:
Department of Geosciences, North Dakota State University, Fargo, ND
Nathan J. Smith
Affiliation:
Department of Sociology and Anthropology, North Dakota State University, Fargo, ND

Abstract

The availability of lidar datasets has led to several advances in archaeology, notably in the process of site prospection. Some remote sensing practitioners have aimed to create automated feature extraction (AFE) techniques that increase the efficiency and efficacy of identification and analysis. While these advances have been successful, many archaeological professionals who might have an interest in lidar-derived products do not have the technical experience to modify or create AFE techniques for particular regions or environments. Additionally, some features are not appropriate for AFE. Instead, the most widely used technique is still likely to be visually based manual feature identification. Using authors of different experience levels, we seek to evaluate the use of manual techniques for feature identification and subsequent analysis by implementing a publicly available lidar-derived digital elevation model (DEM). We demonstrate that manual feature extraction (MFE) can be accurate when more than one researcher is involved in a sort of “checks and balances” process. We also show that the use of confidence ratings can be an important part of this process if those ratings have some systematic and clearly defined underpinning. Finally, we argue, using a case study from American Samoa, that manually identified features can be analytically important as part of larger landscape studies.

La disponibilidad de conjuntos de datos lídar ha permitido varios avances en arqueología, notablemente en el proceso de prospección de sitios. Algunos profesionales de teledetección han apuntado a crear técnicas de extracción de características automatizadas (AFE por sus siglas en inglés) que aumentan la eficiencia y eficacia de la identificación y análisis. Aun cuando estos avances han sido exitosos, muchos arqueólogos interesados en el conjunto de datos lídar no tienen la experiencia técnica para modificar o crear técnicas AFE para su uso en regiones o ambientes particulares. Adicionalmente, algunos rasgos podrían no ser apropiados para el uso de AFE. Por lo tanto, es probable que la técnica mayormente usada continúe siendo la identificación manual de características por medio visual. Usando tres autores con diferentes niveles de experiencia, buscamos evaluar el uso de técnicas manuales para la identificación de rasgos y análisis subsecuentes usando un modelo de elevación digital de acceso público derivado de datos lídar. Demostramos que la extracción manual de características (MFE por sus siglas en inglés) puede ser precisa cuando más de un investigador participa en una especie de sistema de controles y balances. Demostramos que el uso de índices de confianza puede ser una parte importante de este proceso si las clasificaciones tienen bases claramente definidas y sistemáticas. Finalmente, usando el estudio de un caso de Samoa Estadounidense, argumentamos que la identificación manual de características puede ser analíticamente importante como parte de estudios de paisaje más amplios.

Type
Articles
Copyright
Copyright 2017 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, David J. 2008 Report on Archaeological Test Excavations at the New Ta'u Dispensary Site. Samoa Environmental and Archaeological Consultants. Submitted to the Department of Public Works, American Samoa Government, Pago Pago, American Samoa.Google Scholar
Bennett, Rebecca, Welham, Kate, Hill, Ross A., and Ford, Andrew 2012 A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data. Archaeological Prospection 19: 4148.CrossRefGoogle Scholar
Bewley, R.H., Crutchley, S.P., and Shell, C.A. 2005 New Light on an Ancient Landscape: Lidar Survey in the Stonehenge World Heritage Site. Antiquity 79:636647.CrossRefGoogle Scholar
Challis, Keith, Forlin, Paolo, and Kincey, Mark 2011 A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data. Archaeological Prospection 18:279289.CrossRefGoogle Scholar
Chase, Adrian S.Z. 2016 Beyond Elite Control: Residential Reservoirs at Caracol, Belize. WIREs Water 3 (6):885897.CrossRefGoogle Scholar
Chase, Arlen F., Chase, Diane Z., Fisher, Christopher T., Leisz, Stephen J., and Weishampel, John F. 2012 Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proceedings of the National Academy of Science 109:1291612921.Google ScholarPubMed
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, Brown, Kathryn, Shrestha, Ramesh L., Carter, William E., and Diaz, Jaun Fernandez 2014 Ancient Maya Regional Settlement and Inter-Site Analysis: The 2013 West-Central Belize LiDAR survey. Remote Sensing 6:86718695.CrossRefGoogle Scholar
Clark, Jeffrey T. 1990 The Ta'u Road Archaeological Project. North Dakota State University. Submitted to the American Samoa Historic Preservation Office, Pago Pago, American Samoa.Google Scholar
Cleghorn, Paul L., and Shapiro, William A. 2000 Archaeological Data Recovery Report for the Proposed Ta'u Road Reconstruction, at Faga and Fitiuta, Ta'u Island, Manu'a, American Samoa. Pacific Legacy. Submitted to the American Samoa Historic Preservation Office, Pago Pago, American Samoa.Google Scholar
Devereux, B.J., Amable, G.S., Crow, P., and Cliff, A.D. 2005 The Potential of Airborne Lidar for Detection of Archaeological Features under Woodland Canopies. Antiquity 79:648660.CrossRefGoogle Scholar
Evans, Damien, and Fletcher, Roland 2015 The Landscape of Angkor Wat Redefined. Antiquity 89:14021419.CrossRefGoogle Scholar
Freeland, Travis, Heung, Brandon, Burley, David V., Clark, Geoffrey, and Knudby, Anders 2016 Automated Feature Extraction for Prospection and Analysis of Monumental Earthworks from Aerial LiDAR in the Kingdom of Tonga. Journal of Archaeological Science 69:6474.CrossRefGoogle Scholar
Herdrich, David J., and Clark, Jeffrey T. 1993 Samoan Tia 'Ave and Social Structure: Methodological and Theoretical Considerations. In The Evolution and Organisation of Prehistoric Society in Polynesia, edited by Graves, Michael W. and Green, Roger C., pp. 5263. New Zealand Archaeological Association Monograph Series, Auckland.Google Scholar
Herdrich, David J., Moore, James R., Kilzner, Nick, and Kennedy, Joseph 1996 A Cultural Resource Evaluation (Phase I and II) for a Portion of Road 1b, Phase I of the Ta'u Road Reconstruction Located on Ta'u Island, Manu'a, American Samoa. Archaeological Consultants of the Pacific. Submitted to the American Samoa Historic Preservation Office, Pago Pago, American Samoa.Google Scholar
Holmer, Richard N. 1980 Mt. Olo Settlement Pattern Interpretation. In Archaeological Excavations in Western Samoa, edited by Jennings, J.D. and Holmer, R.N., pp. 93103. Pacific Anthropological Records, No. 32, Honolulu.Google Scholar
Howey, Meghan C., Sullivan, Franklin B., Tallant, Jason, Kopple, Robert Vande, and Palace, Michal W. 2016 Detecting Precontact Microtopographic Features in a Forested Landscape with Lidar: A Case Study from the Upper Great Lakes Region, AD 1000–1600. PLos One https://doi.org/10.1371/journal.pone.0162062 CrossRefGoogle Scholar
Hunt, Terry L., and Kirch, Patrick V. 1988 An Archaeological Survey of the Manu'a Islands, American Samoa. Journal of the Polynesian Society 97:153183.Google Scholar
Johnson, Katharine M., and Ouimet, William B. 2014 Rediscovering the Lost Archaeological Landscape of Southern New England Using Airborne Light Detection and Ranging (LiDAR). Journal of Archaeological Science 43:920.CrossRefGoogle Scholar
Johnson, Katharine M., and Ouimet, William B. 2016 Physical Properties and Spatial Controls of Stone Walls in the Northeastern USA: Implications for Anthropocene Studies of 17th Century to Early 20th Century Agriculture. Anthropocene 15:2236.CrossRefGoogle Scholar
Ladefoged, Thegn N., Graves, Michael W., and McCoy, Mark D. 2003 Archaeological Evidence for Agricultural Development in Kohala, Island of Hawai'i. Journal of Archaeological Science 30:923940.CrossRefGoogle Scholar
Ladefoged, Thegn N., McCoy, Mark D., Asner, Gregory P., Kirch, Patrick V., Puleston, Cedric O., Chadwick, Oliver A., and Vitousek, Peter M. 2011 Agricultural Potential and Actualized Development in Hawai'i: An Airborne LIDAR Survey of the Leeward Kohala Field System (Hawai'i Island). Journal of Archaeological Science 38:36053619.CrossRefGoogle Scholar
Liu, Zhanfeng, Gurr, Neil E., Schmaedick, Mark A., Whistler, W. Arthur, and Fischer, Lisa 2011 Vegetation Mapping of American Samoa. General Technical Report (R5-TP-033). Submitted to the U.S. Department of Agriculture, Forest Service, Pacific Southwest Region, Vallejo, California.Google Scholar
McCoy, Mark D., and Hartshorn, Anthony S. 2007 Wind Erosion and Intensive Prehistoric Agriculture: A Case Study from the Kalaupapa Field System, Moloka'i Island, Hawai'i. Geoarchaeology 22:511532.CrossRefGoogle Scholar
McCoy, Mark D., Asner, Gregory P., and Graves, Michael W. 2011 Airborne Lidar Survey of Irrigated Agricultural Landscapes: An Application of the Slope Contrast Method. Journal of Archaeological Science 38:21412154.Google Scholar
McDougall, Ian 2010 Age of Volcanism and Its Migration in the Samoa Islands. Geological Magazine 147:705717.CrossRefGoogle Scholar
Opitz, Rachel S., Ryzewski, Krysta, Cherry, John F., and Moloney, Brenna 2015 Using Airborne LiDAR Survey to Explore Historic-Era Archaeological Landscapes of Montserrat in the Eastern Caribbean. Journal of Field Archaeology 40:523541.CrossRefGoogle Scholar
Pingel, Thomas, J., Clarke, Keith, and Ford, Anabel 2015 Bonemapping: A Lidar Processing and Visualization Technique in Support of Archaeology under the Canopy. Cartography and Geographic Information Science 42:1826.CrossRefGoogle Scholar
Prufer, Keith, and Thompson, Amy E. 2016 Lidar-Based Analyses of Anthropogenic Landscape Alterations as a Component of the Built Environment. Advances in Archaeological Practice 4:393409.CrossRefGoogle Scholar
Quintus, Seth J. 2011 Land Use and the Human-Environment Interaction on Olosega Island, Manu'a, American Samoa. Master's thesis, Department of Sociology and Anthropology, North Dakota State University, Fargo.Google Scholar
Quintus, Seth J. 2012 Terrestrial Food Production and Land Use in Prehistoric Samoa: An Example from Olosega Island, Manu'a, American Samoa. Archaeology in Oceania 47:133140.Google Scholar
Quintus, Seth J. 2015 Dynamics of Agricultural Development in Prehistoric Samoa: The Case of Ofu Island. PhD thesis, Department of Anthropology, University of Auckland, Auckland, New Zealand.Google Scholar
Quintus, Seth J., and Clark, Jeffrey T. 2012 Between Chaos and Control: Spatial Perception of Domestic, Political, and Ritual Organization in Prehistoric Samoa. Journal of the Polynesian Society 121:275302.CrossRefGoogle Scholar
Quintus, Seth J., and Clark, Jeffrey T. 2016 Space and Structure in Polynesia: Instantiated Spatial Logic in American Sāmoa. World Archaeology, DOI: 10.1080/00438243.2016.1195576.CrossRefGoogle Scholar
Quintus, Seth, Clark, Jeffrey T., Day, Stephanie S., and Schwert, Donald P. 2015 Investigating Regional Patterning in Archaeological Remains by Pairing Extensive Survey with a Lidar dataset: The Case of the Manu'a Group, American Samoa. Journal of Archaeological Science: Reports 2:677687.Google Scholar
Quintus, Seth, Allen, Melinda S., and Ladefoged, Thegn N. 2016 In Surplus and in Scarcity: Agricultural Development, Risk Management, and Political Economy, Ofu Island, American Samoa. American Antiquity 81:273293.CrossRefGoogle Scholar
Raber, Steven 2012 Post-flight Aerial Acquisition and Calibration Report. Contract No. EA133C-11-CQ-0009. Report completed by Photo Science, Inc. Colorado Springs, Colorado. https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/2490/supplemental/PhotoScience-AmSam_PostFlightAcquisitionReport_FINAL.pdf, accessed April 28, 2017.Google Scholar
Reese-Taylor, Kathryn, Hernández, Armando Anaya, Esquivel, F. C. Atasta Flores, Monteleone, Kelly, Uriarte, Alejandro, Carr, Christopher, Acuña, Helga Geovannini, Fernandez-Diaz, Juan Carlos, Peuramaki-Brown, Meaghan, and Dunning, Nicholas 2016 Boots on the Ground at Yaxnohcah: Ground-Truthing Lidar in a Complex Tropical Landscape. Advances in Archaeological Practice 4:314338.CrossRefGoogle Scholar
Sand, Christophe, Bole, Jacques, and Baret, David 2012 Archaeology of Manono Island (Samoa): First Field Program Report. Rapport de mission d’ archeology de la Nouvelle-Calédonie et du Pacifique, Nouméa.Google Scholar
Schindling, James, and Gibbes, Cerian 2014 LiDAR as a Tool for Archaeological Research: A Case Study. Archaeological and Anthropological Sciences 6:411423.Google Scholar
Schneider, Anna, Takla, Melanie, Nicolay, Alexander, Raab, Alexandra, and Raab, Thomas 2015 A Template-Matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. Archaeological Prospection 22:4562.CrossRefGoogle Scholar
Stark, Miriam T., Evans, Damien, Rachna, Chay, Pihpal, Heng, and Carter, Alison 2015 Residential Patterning at Angkor Wat. Antiquity 89:14391455.CrossRefGoogle Scholar
Štular, Benjamin, Kokalj, Žiga, Oštir, Kristof, and Nuninger, Laure 2012 Visualization of Lidar-Derived Relief Models for Detection of Archaeological Features. Journal of Archaeological Science 39:33543360.CrossRefGoogle Scholar
Wallin, Paul, and Martinsson-Wallin, Helene 2007 Settlement Patterns-Social and Ritual Space in Prehistoric Samoa. Archaeology in Oceania 42 Supplement:8389.CrossRefGoogle Scholar
Whistler, W. Arthur 1992 Botanical Inventory of the Proposed Ta'u Unit of the National Park of American Samoa. Technical Report 83. Submitted to the National Park Service, Honolulu.Google Scholar
Yaeger, Jason, Brown, M. Kathryn, and Cap, Bernadette 2016 Locating and Dating Sites Using Lidar Survey in a Mosaic Landscape in Western Belize. Advances in Archaeological Practice 4:339356.CrossRefGoogle Scholar