Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T20:51:44.911Z Has data issue: false hasContentIssue false

Detection Thresholds of Archaeological Features in Airborne Lidar Data from Central Yucatán

Published online by Cambridge University Press:  16 January 2017

Aline Magnoni
Affiliation:
American Association for the Advancement of Sciences, 1200 New York Ave, NW, Washington, DC 20005
Travis W. Stanton
Affiliation:
University of California, Riverside, 900 University Ave., Riverside, CA 92521
Nicolas Barth
Affiliation:
University of California, Riverside, 900 University Ave., Riverside, CA 92521
Juan Carlos Fernandez-Diaz
Affiliation:
National Center for Airborne Laser Mapping, University of Houston, 5000 Gulf Freeway, Houston, TX 77204-5059
José Francisco Osorio León
Affiliation:
Instituto Nacional de Arqueología e Historia, Km 6.5 Antigua Carretera Mérida- Progreso, Colonia Gonzálo Guerrero, Mérida, Yucatán, C.P. 97118, Mexico
Francisco Pérez Ruíz
Affiliation:
Instituto Nacional de Arqueología e Historia, Km 6.5 Antigua Carretera Mérida- Progreso, Colonia Gonzálo Guerrero, Mérida, Yucatán, C.P. 97118, Mexico
Jessica A. Wheeler
Affiliation:
Department of Anthropology, Tulane University, Dinwiddie Hall 101, 6823 St. Charles Ave, New Orleans, LA 70118

Abstract

In this article we evaluate ∼48km2 of airborne lidar data collected at a target density of 15 laser shots/m in central Yucatán, Mexico. This area covers parts of the sites of Chichén Itzá and Yaxuná, a kilometer-wide transect between these two sites, and a transect along the first few kilometers of Sacbé 1 from Yaxuná to Cobá. The results of our ground validation and mapping demonstrate that not all sizable archaeological features can be detected in the lidar images due to: (1) the slightly rolling topography interspersed with 1-6 m-high bedrock hummocks, which morphologically mimic house mounds, further complicated by the presence of low foundations; (2) the complex forest structure in central Yucatán, which has particularly dense near-ground understory resulting in a high number of mixed-signal ground and low vegetation returns which reduces the fidelity and accuracy of the bare-earth digital elevation models; and (3) the predominance of low archaeological features difficult to discern from the textural noise of the near-ground vegetation. In this article we explore different visualization techniques to increase the identification of cultural features, but we conclude that, in this portion of the Maya region, lidar should be used as a complement to traditional on-the-ground survey techniques.

En este trabajo evaluamos datos de lidar recolectados en la parte central de Yucatán. Se mapeó un total de ∼48km2 en el mes de mayo 2014. El área mapeada cubre grandes porciones de los sitios de Yaxuná y Chichén Itzá además de un transecto de un kilómetro de ancho entres estos dos sitios y otro transecto a lo largo de los primeros cuatro kilómetros del Sacbé 1 de Yaxuná a Cobá. Los vuelos fueron llevados a cabo por un equipo del Centro Nacional de Mapeo Aéreo por Laser de la Universidad de Houston con una densidad de 15 pulsos de laser por metro cuadrado. Varios de los elementos grandes fueron verificados y confirmados en los sitios de Yaxuná y Chichén Itzá y se recorrió un transecto de 200 m de ancho entre los sitios de Yaxuná y Popolá (una distancia de cinco kilómetros) mapeando todos los elementos culturales. Los resultados de este trabajo demuestran que no todos los elementos de tamaño substancial se pueden identificar en las imágenes del lidar por tres razones principales. Primero, el centro de Yucatán está caracterizado por afloramientos de roca madre muy parecidos a montículos domésticos y a veces sirven como la base de pequeños cimientos. Segundo, la vegetación baja, resultado en gran parte de un sistema agrícola de roza y quema, presenta problemas para distinguir la superficie de la vegetación. Tercero, como muchas de las estructuras son plataformas relativamente bajas, es difícil identificar una gran parte del asentamiento en la región. En este trabajo exploramos varias técnicas de visualización de los datos de lidar, pero concluimos que, aunque esta tecnología cambia la manera en que los arqueólogos buscan y mapean sitios, no es substituto de las técnicas tradicionales de recorrido y mapeo en esta parte de zona maya.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Axelsson, Peter 2000 DEM Generation from Laser Scanner Data Using Adaptive TIN Models. International Archives of Photogrammetry and Remote Sensing XXXIII:111118.Google Scholar
Barnes, Ian 2003 Aerial Remote-Sensing Techniques Used in the Management of Archaeological Monuments on the British Army's Salisbury Plain Training Area, Wiltshire, UK. Archaeological Prospection 10:8391.CrossRefGoogle Scholar
Bewley, Robert H. 2003 Aerial Survey for Archaeology. The Photogrammetric Record 18(104):273292.CrossRefGoogle Scholar
Bewley, Robert H., Crutchley, Simon P., and Shell, Colin A. 2005 New Light on an Ancient Landscape: LIDAR Survey in the Stonehenge World Heritage Site. Antiquity 79:636647.CrossRefGoogle Scholar
Brainerd, George W. 1958 The Archaeological Ceramics of Yucatan. Anthropological Records, Volume 19. University of California, Berkeley.Google Scholar
Challis, Keith 2006 Airborne Laser Altimetry in Alluviated Landscapes. Archaeological Prospection 13(2):103127.CrossRefGoogle Scholar
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, and Brown, M. Kathryn 2014 The Use of LiDAR in Understanding the Ancient Maya Landscape: Caracol and Western Belize. Advances in Archaeological Practice 2(3):147160.CrossRefGoogle Scholar
Chase, Arlen F., Chase, Diane Z., Fisher, Christopher T., Leisz, Stephen J., and Weishampel, John F. 2012 Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proceedings of the National Academy of Sciences of the United States of America 109(32):1291612921.CrossRefGoogle ScholarPubMed
Chase, Arlen F., Chase, Diane Z., and Weishampel, John F. 2010 Lasers in the Jungle: Airborne Sensors Reveal a Vast Maya Landscape. Archaeology 63(4):2729.Google Scholar
Chase, Arlen F., Chase, Diane Z., and Weishampel, John F. 2013 The Use of LiDAR at the Maya Site of Caracol, Belize. In Mapping Archaeological Landscapes from Space: In Observance of the 40th Anniversary of the World Heritage Convention, edited by Comer, D. and Harrower, M., pp. 179189. Springer, New York.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38:387398.CrossRefGoogle Scholar
Chase, Diane Z., Chase, Arlen F., Awe, Jaime J., Walker, John H., and Weishampel, John F. 2011 Airborne LiDAR at Caracol, Belize and the Interpretation of Ancient Maya Society and Landscapes. Research Reports in Belizean Archaeology 8:6173.Google Scholar
Cobos Palma, Rafael 2003 The Settlement Patterns of Chichén Itzá. Unpublished Ph.D. dissertation, Department of Anthropology, Tulane University, New Orleans.Google Scholar
Corns, Anthony, and Shaw, Robert 2009 High Resolution 3-Dimensional Documentation of Archaeological Monuments & Landscapes Using Airborne LiDAR. Journal of Cultural Heritage 10S:e72–e77.CrossRefGoogle Scholar
Crutchley, Simon P. 2006 Lidar in the Witham Valley, Lincolnshire: An Assessment of New Remote Sensing Techniques. Archaeological Prospection 13:251257 CrossRefGoogle Scholar
Crutchley, Simon P. 2010 The Light Fantastic: Using Airborne LIDAR in Archaeological Survey. IAPRS XXXVIII:160164.Google Scholar
Crutchley, Simon P., and Peter Crow 2009 The Light Fantastic: Using Airborne LIDAR in Archaeological Survey. English Heritage, Swindon.Google Scholar
Devereux, B.J., Amable, G.S., Crow, P., and Cliff, A.D. 2005 The Potential of Airborne LIDAR for Detection of Archaeological Features under Woodland Canopies. Antiquity 79:648660.CrossRefGoogle Scholar
Doneus, Michael, and Briese, Christian 2006 Full-Waveform Airborne Laser Scanning as a Tool for Archaeological Reconnaissance. In From Space to Place: Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, edited by Campana, Stefano and Forte, Maurizio, pp. 99105. BAR International Series 1568, Archaeopress, Oxford.Google Scholar
Doneus, Michael, Briese, Christian, Fera, Martin, and Janner, Martin 2008 Archaeological Prospection of Forested Areas Using Full-Waveform Airborne Laser Scanning. Journal of Archaeological Science 35:882893.CrossRefGoogle Scholar
Evans, Damian H., Fletcher, Roland J., Pottier, Christophe, Chevancec, Jean-Baptiste, Soutifb, Dominique, Tand, Boun Suy, Imd, Sokrithy, Ead, Darith, Tind, Tina, Kimd, Samnang, Cromartye, Christopher, De Greefc, Stéphane, Hanusf, Kasper, Bâtyg, Pierre, Kuszingerh, Robert, Shimodai, Ichita, and Boornazian, Glenn 2013 Uncovering Archaeological Landscapes at Angkor Using LIDAR. Proceedings of the National Academy of Sciences 110(31):1259512600.CrossRefGoogle ScholarPubMed
Fernandez-Diaz, Juan Carlos, Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2014 Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing 6:995110001.CrossRefGoogle Scholar
Freidel, David A. 1987 Yaxuna Archaeological Survey: A Report of the 1986 Field Season. Southern Methodist University Press, Dallas.Google Scholar
Freidel, David A. 2007 War and Statecraft in the Northern Maya Lowlands: Yaxuna and Chichén Itzá. In Twin Tollans: Chichén Itzá, Tula, and the Epiclassic and Early Postclassic Mesoamerican World, edited by Kowalski, Jeff K. and Kristen-Graham, Cynthia, pp. 345375. Dumbarton Oaks, Washington D.C. Google Scholar
Freidel, David A., Suhler, Charles K., and Krochock, Ruth 1990 Yaxuna Archaeological Survey: A Report of the 1989 Field Season and Final Report on Phase One. Southern Methodist University, Dallas.Google Scholar
Gallagher, J.M., and Josephs, R.L. 2008 Using LiDAR to Detect Cultural Resources in a Forested Environment: An Example from Isle Royale National Park, Michigan, USA. Archaeological Prospection 15:187206.CrossRefGoogle Scholar
González de la Mata, María Rocío, Ruíz, Francisco Pérez, and León, José Osorio 2006 Vida más allá de Cumtún: El Sacbé No. 3 de Chichén Itzá. In Los Investigadores de la Cultura Maya 14, pp. 419429. Universidad Autónoma de Campeche, Campeche.Google Scholar
Greene, Merle 1986 Some Observations on the X’telhu Panels at Yaxcaba, Yucatan. In Research and Reflections in Archaeology and History: Essays in Honor of Doris Stone, edited by Andrews, E. Wyllys V, pp. 87111. Middle American Research Institute, Pub 57. Tulane University, New Orleans.Google Scholar
Harmon, James M., Leone, Mark P., Prince, Stephen D., and Snyder, Marcia 2006 LiDAR for Archaeological Landscape Analysis: A Case Study of Two Eighteenth-Century Maryland Plantation Sites. American Antiquity 71:649760.CrossRefGoogle Scholar
Hesse, Ralf 2010 LiDAR-Derived Local Relief Models: A New Tool for Archaeological Prospection. Archaeological Prospection 17:6772.CrossRefGoogle Scholar
Holden, Nick, Horne, Peter, Bewley, Robert H. 2002 High-Resolution Digital Airborne Mapping and Archaeology. In Aerial Archaeology - Developing Future Practice: NATO Advanced Research Workshop, Leszno, Poland, 15th–17th November 2000, edited by Bewley, Robert and Raczkowski, Wlodzimierz, pp. 173180. IOS Press, Amsterdam.Google Scholar
Hutson, Scott R., Magnoni, Aline, Stanton, Travis W., Slater, Donald A., and Johnson, Scott 2012 Memory and Power at Joya, Yucatán. In Power and Identity in Archaeological Theory and Practice: Case Studies from Ancient Mesoamerica, edited by Harrison-Buck, Eleanor, pp. 3952. The University of Utah Press, Salt Lake City.Google Scholar
Johnson, Katharine M., and Ouimet, William B. 2014 Rediscovering the Lost Archaeological Landscape of Southern New England Using Airborne Light Detection and Ranging (LiDAR). Journal of Archaeological Science 43:920.CrossRefGoogle Scholar
Johnson, Scott A.J. 2012 Late and Terminal Classic Power Shifts in Yucatan: The View from Popola. Unpublished Ph.D. dissertation, Department of Anthropology, Tulane University, New Orleans.Google Scholar
Kraus, Karl, and Pfeifer, N. 1998 Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data. ISPRS Journal of Photogrammetry and Remote Sensing 53(4):193203.CrossRefGoogle Scholar
Langridge, Robert, Ries, Will, Barth, Nicolas, Khajavi, Narges, and Pascale, Greg De 2014 Developing sub 5-m LiDAR DEMs for Forested Sections of the Alpine and Hope Faults, South Island, New Zealand: Implications for Structural Interpretations. Journal of Structural Geology 64:5366.CrossRefGoogle Scholar
Lasaponara, Rosa, Coluzzi, Rosa, and Masini, Nicola 2011 Flights into the Past: Full-Waveform Airborne Laser Scanning Data for Archaeological Investigation. Journal of Archaeological Science 38:20612070.CrossRefGoogle Scholar
Lasaponara, Rosa, and Masini, Nicola 2011 Full-Waveform Airborne Laser Scanning for the Detection of Medieval Archaeological Microtopographic Relief. Journal of Cultural Heritage 10S:e78–e82.Google Scholar
Leopold, Starker 1950 Vegetation Zones of Mexico. Ecology 31(4):507518.CrossRefGoogle Scholar
Lin, Zhou, Kaneda, Heitaro, Mukoyama, Sakae, Asada, Norichika, and Chiba, Tatsuro 2013 Detection of Subtle Tectonic-Geomorphic Features in Densely Forested Mountains by Very High-Resolution Airborne LiDAR Survey. Geomorphology 182:104115.CrossRefGoogle Scholar
Magnoni, Aline, Johnson, Scott A., and Stanton, Travis W. 2014 En la sombra de Chichén Itzá: evaluando la iconografía de la región sureña de Chichén Itzá durante el Clásico Terminal. In The Archaeology of Yucatán: New Directions and Data, edited by Stanton, Travis W., pp. 297314. BAR International Series. Archaeopress, Oxford.CrossRefGoogle Scholar
Millard, Koreen, Burke, Charles, Stiff, Douglas, and Redden, Anna 2009 Detection of a Low-Relief 18th Century British Siege Trench Using LiDAR Vegetation Penetration Capabilities at Fort Beauséjour-Fort Cumberland National Historic Site, Canada. Geoarchaeology 24:576588.CrossRefGoogle Scholar
O’Neill, John 1933 Survey of Yaxuna. Carnegie Institution of Washington Yearbook 32:8889.Google Scholar
Pfeifer, Norbert, Kraus, Karl, and Kōstli, A. 1999 Restitution of Airborne Laser Scanner Data in Wooded Areas. GIS Geo-Information-Systems 12(2):1821.Google Scholar
Pluckhahn, Thomas J., and Thompson, Victor D. 2012 Integrating LiDAR Data and Conventional Mapping of the Fort Center Site in South-Central Florida: A Comparative Approach. Journal of Field Archaeology 37:289301.CrossRefGoogle Scholar
Prufer, Keith M., Thompson, Amy E., and Kennett, Douglas J. 2015 Evaluating Airborne LiDAR for Detecting Settlements and Modified Landscapes in Disturbed Tropical Environments at Uxbenká, Belize. Journal of Archaeological Science 57:113.CrossRefGoogle Scholar
Risbøl, O., Gjertsen, K.A., and Skare, K. 2006 Airborne Laser Scanning of Cultural Remains in Forests: Some Preliminary Results from a Norwegian Project. In From Space to Place: Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, edited by Campana, Stefano and Forte, Maurizio, pp. 107112. BAR International Series 1568, Archaeopress, Oxford.Google Scholar
Risbøl, O., Bollandsås, O.M., Nesbakken, A., Ørka, H.O., Næsset, E., and Gobakken, T. 2013 Interpreting Cultural Remains in Airborne Laser Scanning Generated Digital Terrain Models: Effects of Size and Shape on Detection Success Rates. Journal of Archaeological Science 40(12):46884700.CrossRefGoogle Scholar
Rosenswig, Robert M., López-Torrijos, Ricardo, and Antonelli, Caroline E. 2015 LIDAR Data from the Izapa Polity: New Results and Methodological Issues from Tropical America. Archaeological and Anthropological Sciences 7(4): 487504.CrossRefGoogle Scholar
Rosenswig, Robert M., López-Torrijos, Ricardo, Antonelli, Caroline E., and Mendelsohn, Rebecca R. 2013 Lidar Mapping and Surface Survey of the Izapa State on the Tropical Piedmont of Chiapas, Mexico. Journal of Archaeological Science 40:14931507.CrossRefGoogle Scholar
Ruppert, Karl 1950 Gallery-Patio Type Structures at Chichen Itza. In For the Dean: Essays in Honor of Byron Cummings, edited by Reed, Erik K. and King, Dale S, pp. 249258. Hohokam Museums Association, Tucson.Google Scholar
Shell, Colin, and Roughley, Corinne 2004 Exploring the Loughcrew Landscape: A New Airborne Approach. Archaeology Ireland 18/2(68):2225.Google Scholar
Sittler, Benoît, Schellberg, and S. 2006 The Potential of LiDAR in Assessing Elements of Cultural Heritage Hidden under Forest Canopies or Overgrown by Vegetation: Possibilities and Limits in Detecting Microrelief Structures for Archaeological Surveys. In From Space to Place: Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, edited by Campana, Stefano and Forte, Maurizio, pp. 117122. BAR International Series 1568, Archaeopress, Oxford.Google Scholar
Stanton, Travis W., Freidel, David A., Suhler, Charles K., Ardren, Traci, Ambrosino, James N., Shaw, Justine M., and Bennett, Sharon 2010 Excavations at Yaxuná, 1986–1996: Results of the Selz Foundation Yaxuná Project. BAR International Series 2056. Archaeopress, Oxford.CrossRefGoogle Scholar
Thompson, J. Eric S. 1954 The Rise and Fall of Maya Civilization. University of Oklahoma Press, Norman.Google Scholar
Tozzer, Alfred M. 1957 Chichen Itza and Its Cenote of Sacrifice. Memoirs of the Peabody Museum of Archaeology and Ethnology, Volumes XI and XII. Harvard University, Cambridge.Google Scholar
Villa Rojas, Alfonso 1934 The Yaxuna-Coba Causeway. Contributions to American Archaeology No. 9, Carnegie Institution of Washington, Pub. 436. Carnegie Institution of Washington, Washington, D.C. Google Scholar
Weishampel, John F., Chase, Arlen F., Chase, Diane Z., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., Hightower, Jessica, and Angelo, James 2010 Remote Sensing of Ancient Maya Land Use Features at Caracol, Belize related to Tropical Rainforest Structure. In Space, Time, Place: Third International Conference on Remote Sensing in Archaeology, edited by Campna, Stefano, Forte, Maurizio, and Liuzza, Claudia, pp. 4552. British Archaeological Reports S2118. Archaeopress, Oxford.Google Scholar
Weishampel, John F., Hightower, Jessica N., Chase, Arlen F., and Chase, Diane Z. 2012 Use of Airborne LiDAR to Delineate Canopy Degradation and Encroachment along the Guatemala-Belize Border. Tropical Conservation Science 5(1):1224.CrossRefGoogle Scholar
Weishampel, John F., Hightower, Jessica N., Chase, Arlen F., and Chase, Diane Z. 2013 Remote Sensing of Below-Canopy Land Use Features from the Maya Polity of Caracol. In Understanding Landscapes: From Discovery through Land Their Spatial Organization, edited by Djinjian, Francois and Robert, Sandrine, pp. 131136. Archaeopress, British Archaeological Reports, Oxford.Google Scholar
Weishampel, John F., Hightower, Jessica, Chase, Arlen F., Chase, Diane Z., and Patrick, Ryan A. 2011 Detection and Morphologic Analysis of Potential Below-Canopy Cave Openings in the Karst Landscape around the Maya Polity of Caracol using Airborne LiDAR. Journal of Cave and Karst Studies 73(3):187196.CrossRefGoogle Scholar
Willey, Gordon R. 1953 Prehistoric Settlement Patterns in the Viru Valley, Peru. Bulletin 155. Bureau of American Ethnology, Washington, D.C. Google Scholar
Zielke, Olaf, Klinger, Yann, and Arrowsmith, Ramon 2015 Fault Slip and Earthquake Recurrence along Strike-Slip Faults- Contributions of High-Resolution Geomorphic Data. Tectonophysics 638:4362.CrossRefGoogle Scholar