Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T10:12:46.145Z Has data issue: false hasContentIssue false

User Guide for Luminescence Sampling in Archaeological and Geological Contexts

Published online by Cambridge University Press:  16 January 2017

Michelle S. Nelson
Affiliation:
Utah State University Luminescence Lab, 1770 N Research Parkway, Suite 123, North Logan UT
Harrison J. Gray
Affiliation:
United States Geological Survey, Box 25046 MS 974, Denver, CO 80225
Jack A. Johnson
Affiliation:
Burke Museum of Natural History and Culture University of Washington Box 353010, Seattle, WA 98195
Tammy M. Rittenour
Affiliation:
Department of Geology, Utah State University, 4505 Old Main Hill, Logan, UT 84322
James K. Feathers
Affiliation:
Department of Anthropology, University of Washington, P.O. Box 353100, Seattle, WA 98195
Shannon A. Mahan
Affiliation:
United States Geological Survey, Box 25046 MS 974, Denver, CO 80225

Abstract

Luminescence dating provides a direct age estimate of the time of last exposure of quartz or feldspar minerals to light or heat and has been successfully applied to deposits, rock surfaces, and fired materials in a number of archaeological and geological settings. Sampling strategies are diverse and can be customized depending on local circumstances, although all sediment samples need to include a light-safe sample and material for dose-rate determination. The accuracy and precision of luminescence dating results are directly related to the type and quality of the material sampled and sample collection methods in the field. Selection of target material for dating should include considerations of adequacy of resetting of the luminescence signal (optical and thermal bleaching), the ability to characterize the radioactive environment surrounding the sample (dose rate), and the lack of evidence for post-depositional mixing (bioturbation in soils and sediment). Sample strategies for collection of samples from sedimentary settings and fired materials are discussed. This paper should be used as a guide for luminescence sampling and is meant to provide essential background information on how to properly collect samples and on the types of materials suitable for luminescence dating.

La datación por luminiscencia proporciona una estimación directa de la edad del último momento en el que el cuarzo o los minerales de feldespato se expusieron a la luz o al calor y que se ha aplicado exitosamente a depósitos, superficies rocosas y materiales expuestos al fuego en distintos contextos arqueológicos y geológicos. Las estrategias de muestreo son diversas y pueden ser individualizadas dependiendo de las circunstancias locales, aunque todas las muestras de sedimentos deben incluir una muestra segura que no haya sido expuesta a la luz y material para calcular la tasa de la dosis. La exactitud y precisión de los resultados de la datación por luminiscencia están directamente relacionadas con el tipo y la calidad de los materiales muestreados y los métodos de recolección de muestras en el campo. La elección del material de estudio para su datación debe incluir las siguientes consideraciones en torno a la idoneidad de poder reposicionar la señal de luminiscencia (blanqueador óptico y térmico), la capacidad de caracterizar el ambiente radiactivo que rodea la muestra (la tasa de la dosis) y el que no exista evidencia de una alteración posdeposicional (bioperturbación en suelos y sedimentos). Se discuten las estrategias de muestreo para la recolección de muestras de contextos sedimentarios y de materiales expuestos al fuego. Este artículo debe utilizarse como una guía para el muestreo por luminiscencia y tiene la intención de proveer información básica de cómo recolectar muestras y sobre los tipos de materiales apropiados para la datación por luminiscencia.

Type
How-To Series
Copyright
Copyright © Society for American Archaeology 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J. 1985 Thermoluminescence Dating. Academic Press, Orlando,Florida.Google Scholar
Aitken, M.J. 1998 An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford University Press, New York.Google Scholar
Auclair, M., Lamothe, M., and Huot, S. 2003 Measurement of Anomalous Fading for Feldspar IRSL Using SAR. Radiation Measurements 37:487492.Google Scholar
Ballarini, M., Wallinga, J. Murray, A.S. Van Heteren, S. Oost, A.P. Bos, A.J.J., and Van Eijk, C.W.E. 2003 Optical Dating of Young Coastal Dunes on a Decadal Time Scale. Quaternary Science Reviews 22:10111017.Google Scholar
Bateman, Mark D. Boulter, Claire H. Carr, Andrew S. Frederick, Charles D. Peter, Duane, and Wilder, Michael 2007 Detecting Post-depositional Sediment Disturbance in Sandy Deposits Using Optical Luminescence. Quaternary Geochronology 2:5764.CrossRefGoogle Scholar
Bateman, Mark D., Frederick, Charles D. Jaiswal, Manoj K., and Singhvi, Ashok K. 2003 Investigations into the Potential Effects of Pedoturbation on Luminescence Dating. Quaternary Science Reviews 22:11691176.CrossRefGoogle Scholar
Bøtter-Jensen, Lars Bulur, E. Duller, G.A.T., and Murray, A.S. 2000 Advances in Luminescence Instrument Systems. Radiation Measurements 32:523528.Google Scholar
Bueno, L., Feathers, J., and Blasis, P.De 2013 The Formation Process of a Paleoindian Open-air Site in Central Brazil: Integrating Lithic Analysis, Radiocarbon and Luminescence Dating. Journal of Archaeological Science 40:190203.CrossRefGoogle Scholar
Bush, D. A., and Feathers, J.K. 2003 Application of OSL Single-Aliquot and Single-Grain Dating to Quartz from Anthropogenic Soil Profiles in the SE United States. Quaternary Science Reviews 22:11531159.CrossRefGoogle Scholar
Duller, G.A.T. 2004 Luminescence Dating of Quaternary Sediments: Recent Advances. Journal of Quaternary Science 19:183192.CrossRefGoogle Scholar
Duller, G.A.T. 2008 Luminescence Dating: Guidelines on Using Luminescence Dating in Archaeology. English Heritage, Swindon.Google Scholar
Duller, G.A.T., Bøtter-Jensen, L., and Murray, A.S. 2000 Optical Dating of Single Sand-Sized Grains of Quartz: Sources of Variability. Radiation Measurements 32:453457.Google Scholar
Duller, G.A.T., Bøtter-Jensen, L. Murray, A.S., and Truscott , A.J. 1999 Single Grain Laser Luminescence (SGLL) Measurements Using a Novel Automated Reader. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 155:506514.CrossRefGoogle Scholar
Feathers, James K. 2003 Use of Luminescence Dating in Archaeology. Measurement Science and Technology 14:1493.Google Scholar
Feathers, James K. 2009 Problems of Ceramic Chronology in the Southeast: Does Shell-tempered Pottery Appear Earlier than We Think? American Antiquity 74:113142.Google Scholar
Feathers, James K. 2012 Luminescence Dating of Anthropogenic Rock Structures in the Northern Rockies and Adjacent High Plains, North America: A Progress Report. Quaternary Geochronology 10:399405.CrossRefGoogle Scholar
Feathers, James K. Holliday, Vance T., and Meltzer, David J. 2006 Optically Stimulated Luminescence Dating of Southern High Plains Archaeological Sites. Journal of Archaeological Science 33:16511665.Google Scholar
Feathers, J.K., Johnson, J., and Kembel, S.R. 2008 Luminescence Dating of Monumental Stone Architecture at Chavín de Huántar, Perú. Journal of Archaeological Method and Theory 15:266296.Google Scholar
Galbraith, R.F., and Roberts, R.G. 2012 Statistical Aspects of Equivalent Dose and Error Calculation and Display in OSL Dating: An Overview and Some Recommendations. Quaternary Geochronology 11:127.Google Scholar
Godfrey-Smith, Dorothy I. Huntley, David J., and Chen, W.H. 1988 Optical Dating Studies of Quartz and Feldspar Sediment Extracts. Quaternary Science Reviews 7:373380.Google Scholar
Huckleberry, Gary, Hayashida, Frances, and Johnson, Jack 2012 New Insights into the Evolution of an Intervalley Prehistoric Canal System, North Coastal Peru. Geoarchaeology 27:492520.Google Scholar
Huckleberry, Gary, and Rittenour , Tammy 2014 Combining Radiocarbon and Single-Grain Optically Stimulated Luminescence Methods to Accurately Date Pre-ceramic Irrigation Canals, Tucson, Arizona. Journal of Archaeological Science 41:156170.Google Scholar
Huntley, David J. Godfrey-Smith, Dorothy I., and Thewalt, Michael L.W. 1985 Optical Dating of Sediments. Nature 313:105107.Google Scholar
Jacobs, Zenobia, and Roberts , Richard G. 2007 Advances in Optically Stimulated Luminescence Dating of Individual Grains of Quartz from Archaeological Deposits. Evolutionary Anthropology 16:210223.Google Scholar
Jain, Mayank Murray, A.S., and Bøtter-Jensen, Lars 2004 Optically Stimulated Luminescence Dating: How Significant is Incomplete Light Exposure in Fluvial Environments? Quaternaire 15:143157.Google Scholar
Jaiswal, Manoj K. Chen, Yue Gau, Kale, Vishwas S., and Achyuthan, Hema 2009 Residual Luminescence in Quartz from Slack Water Deposits in Kaveri Basin, South India: A Single Sliquot Approach. Geochronometria 33:18.CrossRefGoogle Scholar
Jeong, Gi Young, and Choi, Joeng-Heon 2012 Variations in Quartz OSL Components with Lithology, Weathering and Transportation. Quaternary Geochronology 10:320326.Google Scholar
Kemp, Justine, Pietsch, Timothy J., and Olley, Jon 2014 Digging Your Own Grave: OSL Signatures in Experimental Graves. Journal of Human Evolution 76:7782.Google Scholar
Kenworthy, M.K. Rittenour, T.M. Pierce, J.L. Sutfin, N.A., and Sharp, W.D. 2014 Luminescence Dating Without Sand Lenses: An Application of OSL to Coarse-Grained Alluvial Fan Deposits of the Lost River Range, Idaho, USA. Quaternary Geochronology 23:925.Google Scholar
Lail, Warren K. Sammeth, David Mahan, Shannon, and Nevins, Jason 2013 A Non-Destructive Method for Dating Human Remains. Advances in Archaeological Practice: A Journal of the Society for American Archaeology 1:91103.Google Scholar
Lamothe, M., Auclair, M. Hamzaoui, C., and Huot , S. 2003 Towards a Prediction of Long Term Anomalous Fading of Feldspar IRSL. Radiation Measurements 37:493498.CrossRefGoogle Scholar
Lawson, Michael J., Roder, Belinda J. Stang, Dallon M., and Rhodes , Edward J. 2012 OSL and IRSL Characteristics of Quartz and Feldspar from Southern California, USA. Radiation Measurements 47:830836.Google Scholar
Lian, Olav B., and Roberts , Richard G. 2006 Dating the Quaternary: Progress in Luminescence Dating of Sediments. Quaternary Science Reviews 25:24492468.Google Scholar
Liritzis, Ioannis,Singhvi, Ashok K. Feathers, Jim K. Wagner, Gunther A. Kadereit, Annette Zacharias, Nikolaos, and Li, Sheng Hua 2013 Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology: An Overview. Springer, New York.Google Scholar
López, Gloria I., and Thompson , Jeroen W. 2012 OSL and Sediment Accumulation Rate Models: Understanding the History of Sediment Deposition. Quaternary Geochronology 10:175179.Google Scholar
Madsen, Anni Tindahl, and Murray, Andrew S. 2009 Optically Stimulated Luminescence Dating of Young Sediments: A Review. Geomorphology 109:316.CrossRefGoogle Scholar
Mahan, Shannon A. Gray, Harrison J. Pigati, Jeffrey S. Wilson, Jim Lifton, Nathaniel A. Paces, James B., and Blaauw, Maarten 2014 A Geochronologic Framework for the Ziegler Reservoir Fossil Site, Snowmass Village, Colorado. Quaternary Research 82(3):490503.Google Scholar
Mahan, Shannon A., Miller, David M. Menges, Christopher M., and Yount , James C. 2007 Late Quaternary Stratigraphy and Luminescence Geochronology of the Northeastern Mojave Desert. Quaternary International 166:6178.CrossRefGoogle Scholar
Mallinson, David J. Smith, Curtis W. Mahan, Shannon Culver, Stephen J., and McDowell, Katie 2011 Barrier Island Response to Late Holocene Climate Events, North Carolina, USA. Quaternary Research 76:4657.Google Scholar
Medialdea, Alicia Thomsen, Kristina Jørkov Murray, Andrew Sean, and Benito, G. 2014 Reliability of Equivalent-dose Determination and Age-Models in the OSL Dating of Historical and Modern Palaeoflood Sediments. Quaternary Geochronology 22:1124.Google Scholar
Mejdahl, V. 1979 Thermoluminescence Dating: Beta-dose Attenuation in Quartz Grains. Archaeometry 21:6172.Google Scholar
Mercier, N., and Flaguères, C. 2008 Field Gamma Dose-rate Measurement with a NaI(Tl) Detector: Re-evaluation of the “Threshold” Technique. Ancient TL 25(1):14.Google Scholar
Munyikwa, Kennedy 2000 Cosmic Ray Contribution to Environmental Dose Rates with Varying Overburden Thickness. Ancient TL 18(2):2734.Google Scholar
Murray, Andrew S., and Olley, Jon M. 2002 Precision and Accuracy in the Optically Stimulated Luminescence Dating of Sedimentary Quartz: A Status Review. Geochronometria 21:116.Google Scholar
Murray, Andrew S., and Wintle , Ann G. 2000 Luminescence Dating of Quartz Using an Improved Single Aliquot Regenerative-dose Protocol. Radiation Measurements 32:5773.Google Scholar
Nelson, Michelle S., and Rittenour, Tammy M. 2015 Using Grain-size Characteristics to Model Soil Water Content: Application to Dose-rate Calculation for Luminescence Dating. Radiation Measurements, doi.org/10.1016/j.radmeas.2015.02.016Google Scholar
Olley, Jon, Caitcheon, Gary, and Murray, Andrew 1998 The Distribution of Apparent Dose as Determined by Optically Stimulated Luminescence in Small Aliquots of Fluvial Quartz: Implications for Dating Young Sediments. Quaternary Geochronology 17:10331040.Google Scholar
Pederson, Joel L. Chapot, Melissa S. Simms, Steven R. Sohbati, Reza Rittenour, Tammy M. Murray, Andrew S., and Cox, Gary 2014 Age of Barrier Canyon-Style Rock Art Constrained by Cross-cutting Relations and Luminescence Dating Techniques. Proceedings of the National Academy of Sciences 111:1298612991.Google Scholar
Pietsch, Timothy Olley, Jonathan M., and Nanson, Gerald C. 2008 Fluvial Transport as a Natural Luminescence Sensitiser of Quartz. Quaternary Geochronology 3:365376.Google Scholar
Prescott, John R., and Hutton, John T. 1994 Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating. Radiation Measurements 23:497500.CrossRefGoogle Scholar
Preusser, Frank Degering, Detlev Fuchs, Markus Hilgers, Alexandra Kadereit, Annette Klasen, Nicole Krbetschek, Matthias Richter, Daniel, and Spencer, Joel Q.G. 2008 Luminescence Dating: Basics, Methods and Applications. Quaternary Science Journal 57:95149.Google Scholar
Preusser, Frank, Ramseyer, Karl, and Schlüchter, Christian 2006 Characterization of Low OSL Intensity Quartz from the New Zealand Alps. Radiation Measurements 41:871877.Google Scholar
Rhodes, Edward J. 2011 Optically Stimulated Luminescence Dating of Sediments Over the Past 200,000 Years. Annual Review of Earth and Planetary Sciences 39:461488 Google Scholar
Rink, W. Jack Dunbar, James S. Tschinkel, Walter R. Kwapich, Christina Repp, Andrea Stanton, William, and Thulman, David K. 2013 Subterranean Transport and Deposition of Quartz by Ants in Sandy Sites Relevant to Age Overestimation in Optical Luminescence Dating. Journal of Archaeological Science 40:22172226.Google Scholar
Rittenour, Tammy M. 2008 Luminescence Dating of Fluvial Deposits: Applications to Geomorphic, Palaeoseismic and Archaeological Research. Boreas 37:613635.CrossRefGoogle Scholar
Rittenour, Tammy M. Goble, Ronald J., and Blum, Michael D. 2005 Development of an OSL Chronology for Late Pleistocene Channel Belts in the Lower Mississippi Valley, USA. Quaternary Science Reviews 24:25392554.Google Scholar
Rizza, Magali Mahan, S. Ritz, J.F. Nazari, H. Hollingsworth, J., and Salamati, Reza 2011 Using Luminescence Dating of Coarse Matrix Material to Estimate the Slip Rate of the Astaneh Fault, Iran. Quaternary Geochronology 6:390406.Google Scholar
Roberts, Richard G. 1997 Luminescence Dating in Archaeology: From Origins to Optical. Radiation Measurements 27:819892.Google Scholar
Roberts, Helen M. Muhs, Daniel R. Wintle, Ann G. Duller, Geoff A.T., and Bettis III, E. Arthur 2003 Unprecedented Last-glacial Mass Accumulation Rates Determined by Luminescence Dating of Loess from Western Nebraska. Quaternary Research 59:411419.Google Scholar
Sawakuchi, A. O. Blair, M. W. DeWitt, R. Faleiros, F. M. Hyppolito, T., and Guedes, C.C.F. 2011 Thermal History Versus Sedimentary History: OSL Sensitivity of Quartz Grains Extracted from Rocks and Sediments. Quaternary Geochronology 6:261272.Google Scholar
Sohbati, Reza,Murray, Andrew S. Chapot, Melissa S. Jain, Mayank, and Pederson, Joel 2012 Optically Stimulated Luminescence (OSL) as a Chronometer for Surface Exposure Dating. Journal of Geophysical Research: Solid Earth 117(B09202):17.Google Scholar
Sohn, M.F., Mahan, S.A. Knott, J.R., and Bowman , D.D. 2007 Luminescence Ages for Alluvial-fan Deposits in Southern Death Valley: Implications for Climate-driven Sedimentation along a Tectonically Active Mountain Front. Quaternary International 166:4960.Google Scholar
Steffen, Damian Preusser, Frank, and Schlunegger, Fritz 2009 OSL Quartz Age Underestimation Due to Unstable Signal Components Quaternary Geochronology 4:353362.Google Scholar
Summa-Nelson, Michelle C., and Rittenour, Tammy M. 2012 Application of OSL Dating to Middle to Late Holocene Arroyo Sediments in Kanab Creek, Southern Utah, USA. Quaternary Geochronology 10:167174.CrossRefGoogle Scholar
Thomsen, Kristina Jørkov Murray, A.S. Jain, Mayank, and Bøtter-Jensen, Lars 2008 Laboratory Fading Rates of Various Luminescence Signals from Feldspar-rich Sediment Extracts. Radiation Measurements 43:14741486.Google Scholar
United States Department of Agriculture (USDA) 2015 Animal and Plant Health Inspection Service. Electronic document, http://www.aphis.usda.gov/wps/portal/aphis/home/, accessed February 4, 2015.Google Scholar
United States Geological Survey (USGS) 2013 Other U.S. Laboratories for Luminescence Dating. Electronic document,http://crustal.usgs.gov/laboratories/luminescence_dating/other_labs.html, accessed February 4, 2015.Google Scholar
Utah State University Luminescence Laboratory (USULL) 2015 Instructions for Sample Collection and Submittal. Electronic document, http://www.usu.edu/geo/luminlab/submit.html, accessed February 4, 2015.Google Scholar
Wallinga, Jakob 2002 Optically Stimulated Luminescence Dating of Fluvial Deposits: A Review. Boreas 31:303322.Google Scholar
Wallinga, Jakob, Murray, Andrew, and Wintle, Ann G. 2000 The Single-aliquot Regenerative-dose (SAR) Protocol Applied to Coarse-grain Feldspar. Radiation Measurements 32:529533.CrossRefGoogle Scholar
Wintle, Ann G. 1973 Anomalous Fading of Thermo-luminescence in Mineral Samples. Nature 245:143144.Google Scholar
Wintle, Ann G. 2008 Fifty Years of Luminescence Dating. Archaeometry 50:276312.CrossRefGoogle Scholar