Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T09:40:02.983Z Has data issue: false hasContentIssue false

The Untapped Potential of Magnetic Survey in the Identification of Precontact Archaeological Sites in Wooded Areas

Published online by Cambridge University Press:  16 January 2017

Lisa Hodgetts
Affiliation:
Department of Anthropology, The University of Western Ontario, Social Science Centre, London ON, N6A 5C2, Canada ([email protected])
Jean-Francois Millaire
Affiliation:
Department of Anthropology, The University of Western Ontario, Social Science Centre, London ON, N6A 5C2, Canada ([email protected])
Edward Eastaugh
Affiliation:
Department of Anthropology, The University of Western Ontario, Social Science Centre, London ON, N6A 5C2, Canada ([email protected])
Claude Chapdelaine
Affiliation:
Département d’anthropologie, Université de Montréal, Pavillion Lionel-Groulx, 3150 Jean-Brillant, Montréal QC, H3T 1N8, Canada ([email protected])

Abstract

Evaluating the archaeological potential of wooded areas is often difficult because many of the techniques archaeologists commonly use to locate and map archaeological sites elsewhere are less effective in the trees. Ground cover hinders the visual identification of surface artifacts during pedestrian survey, and the tree canopy impedes many of the techniques used to map areas of interest, such as optical theodolites and DGPS. Shovel test pitting, which disturbs the integrity of sites and provides limited contextual information, is the most common method used to evaluate woodlots today. In light of increasing interest from Indigenous peoples in limiting the impact of archaeological work on their cultural heritage, we are testing less invasive methods to locate and map archaeological sites within wooded areas. Here, we present the results of a magnetic susceptibility survey on a wooded precontact site in southern Quebec, where the technique rapidly determined site limits and pinpointed the location of several longhouses and other features. Where geological conditions are suitable, this method could considerably reduce the cost and impact of archaeological assessment and investigation of wooded sites by both cultural resource management (CRM) and academic archaeologists.

L’évaluation du potentiel archéologique dans les zones boisées est souvent ardue à cause de la présence des arbres qui réduisent de beaucoup l’efficacité des techniques couramment utilisées pour localiser et cartographier les sites archéologiques. Le couvert végétal rend difficile l’identification visuelle des artefacts en surface et le couvert forestier bloque les signaux utilisés par un grand nombre de techniques de cartographie comme les théodolites optiques et les GPS différentiels. La méthode la plus couramment utilisée aujourd’hui dans les zones boisées est la prospection par sondage, une technique qui perturbe les restes archéologiques et fournit peu d’information contextuelle. Conscients de l’intérêt croissant des peuples autochtones pour limiter l’impact des travaux archéologiques sur leur patrimoine culturel, nous avons testé des méthodes moins invasives pour localiser et cartographier les sites archéologiques dans les zones boisées. Nous présenterons ici les résultats de travaux de télédétection dans un boisé du sud du Québec où une prospection par susceptibilité magnétique nous a permis de rapidement déterminer les limites d’un site pré-contact et de localiser plusieurs maisons longues et autres structures archéologiques. Là où les conditions géologiques sont favorables, cette méthode pourrait considérablement réduire le coût et l’impact des interventions archéologiques dans les zones boisées dans le cadre de travaux d’archéologie contractuelle ou académique.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Aitken, Melvin J. 1961. Physics and Archaeolog. Interscience, New York. Google Scholar
Ard, Vincent, Mathé, Vivien, Lévêque, François, and Camus, Adrien 2015. A Comprehensive Magnetic Survey of a Neolithic Causewayed Enclosure in West-Central France for the Interpretation of Archaeological Features. Archaeological Prospection 22:2132.Google Scholar
Arizona State Historic Preservation Office (SHPO), Arizona State Museum (ASM), and the Arizona State Land Department (ASLD) 2001. Arizona Reporting Standards for Cultural Resources. Electronic document, http://azstateparks.com/shpo/downloads/RTP_SHPO_standards_10_09.pdf, accessed July 2, 2015.Google Scholar
British Columbia Archaeology Branch 1989. Archaeological Impact Assessment Guidelines. Ministry of Forests, Lands and Natural Resource Operations. Electronic document, https://www.for.gov.bc.ca/archaeology/docs/impact_assessment_guidelines/index.htm, accessed July 2, 2015.Google Scholar
Chapdelaine, Claude (editor) 2015a. Mailhot-Curran: Un village iroquoien du XVIe Siècle. Recherches Amérindiennes au Québec, Collection Paléo-Québec 35, Montréal. Google Scholar
Chapdelaine, Claude (editor) 2015b. Description du site Mailhot-Curran: Un village étalé sur de petites terrasses étroites coiffées d’un terreau caillouteux. In Mailhot-Curran: Un village iroquoien du XVIe siècle, edited by Chapdelaine, Claude, pp. 107142. Recherches Amérindiennes au Québec, Collection Paléo-Québec 35, Montréal. Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011. Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 282:387398.Google Scholar
Clark, Anthony 1990. Seeing Beneath the Soil: Prospecting Methods in Archaeology. Batsford Press, London.Google Scholar
Cook, Robert A., and Burks, Jarrod 2010. Determining Site Size and Structure: A Fort Ancient Example. American Antiquity 76:145162.Google Scholar
Corney, Mark, Gaffney, Christopher F., and Gater, John A. 1994. Geophysical Investigations at the Carlton Villa, Wiltshire (England). Archaeological Prospection 1:121128.Google Scholar
Dalan, Rinita A. 2006. Magnetic Susceptibility. In Remote Sensing in Archaeology: An Explicitly North American Approach, edited by Johnson, Jay K., pp. 161204. University of Alabama Press, Tuscaloosa.Google Scholar
Dalan, Rinita A. 2008. A Review of the Role of Magnetic Susceptibility in Archaeogeophysical Studies in the USA: Recent Developments and Prospects. Archaeological Prospection 15:131.CrossRefGoogle Scholar
Dalan, Rinita A., and Banerjee, Subir K. 1998. Solving Archaeological Problems Using Techniques of Soil Magnetism. Geoarchaeology 13:336.Google Scholar
David, A. 1995. Geophysical Survey in Archaeological Field Evaluation. Ancient Monuments Laboratory, English Heritage Society, London.Google Scholar
Devereaux, B.J., Amable, G.S, Crow, P., and Cliff, A.D 2005. The Potential of Airborne Lidar for the Detection of Archaeological Features under Woodland Canopies. Antiquity 79:648660.Google Scholar
Dockrill, Stephen J., and Gater, John A. 1992. Exploration and Interpretation in a Prehistoric Landscape. In Geoprospection in the Archaeological Landscape, edited by Spoerry, Paul, pp 2531, Oxbow Monographs 18. Oxbow Books, Oxford.Google Scholar
Eastaugh, Edward, Ellis, Christopher, Hodgetts, Lisa, and Keron, James R. 2013. Problem-Based Magnetometer Survey at the Late Archaic Davidson Site (AhHk-54) in Southwestern Ontario. Canadian Journal of Archaeology 37:274301.Google Scholar
Ellwood, B. Brooks, Harrold, Francis B., Benoist, Stephen L., Thacker, Paul, Otte, Marcel, Bonjean, Dominique,Long, Gary J., Shahin, Ahmed M., Hermann, Raphaël P., and Grandjean, Fernande 2004. Magnetic Susceptibility Applied as an Age–Depth–Climate Relative Dating Technique Using Sediments from Scladina Cave, a Late Pleistocene Cave Site in Belgium. Journal of Archaeological Science 31:283293.Google Scholar
Fassbinder, Jörg W.E. 2015. Seeing Beneath the Farmland, Steppe and Desert Soil: Magnetic Prospecting and Soil Magnetism. Journal of Archaeological Science 56:8595.Google Scholar
Fassbinder, Jörg W.E., and Stanjek, H. 1993. Occurrence of Bacterial Magnetite in Soils from Archaeological Sites. Archaeologia Polana 31:3350.Google Scholar
Ferris, Neal, and Welch, John R. 2014. Beyond Archaeological Agendas: In the Service of a Sustainable Archaeology. InGoogle Scholar
Transforming Archaeology: Activist Practices and Prospects, edited by Atalay, Sonya, Claus, Lee Rains, McGuire, Randall H., and Welch, John R., pp. 215238. Left Coast Press, Walnut Creek, California. Google Scholar
Gaffney, Chris, and Gater, John 2003. Revealing the Buried Past: Geophysics for Archaeologists. Tempus Publishing, Stroud.Google Scholar
Gagné, Michel 2000. L’occupation villageoise iroquoienne dans la région de Saint-Anicet, M.R.C. du Haut Saint-Laurent (1999): Inventaire régional et fouille du site BgFn-1. Submitted to Ministère de la Culture et des Communications et M.R.C. du Haut Saint-Laurent. Copies available from the Service de l’archéologie et des institutions muséales de Québec.Google Scholar
Gagné, Michel 2001. L’occupation villageoise iroquoienne dans la région de Saint-Anicet, M.R.C. du Haut Saint-Laurent (2000): Fouille du site Mailhot-Curran (BgFn-2). Submitted to Ministère de la Culture et des Communications et M.R.C. du Haut Saint-Laurent. Copies available from the Service de l’archéologie et des institutions muséales de Québec.Google Scholar
Gagné, Michel 2002. L’occupation villageoise iroquoienne dans la région de Saint-Anicet, M.R.C. du Haut Saint-Laurent (2001): Fouille du site Mailhot-Curran (BgFn-2). Submitted to Ministère de la Culture et des Communications et M.R.C du Haut Saint-Laurent. Copies available from the Service de l’archéologie et des institutions muséales de Québec.Google Scholar
Gallo, Danilo, Ciminale, Marcello, Pallara, Mauro, and Laviano, Rocco 2011. Susceptibility Measurements, Optical and X-ray Analysis to Explain the Origin of Archaeological Magnetic Anomalies in Tavoliere lowland (Southern Italy). Journal of Archaeological Science 38:399407.Google Scholar
General, Paul, and Warrick, Gary 2004. The Haudenosaunee (Six Nations) and Archaeology. The SAA Archaeological Record 4(5):2932.Google Scholar
Hargrave, Michael L., Somers, Lewis E., Larson, Thomas K., Shields, Richard, and Dendy, John 2002. The Role of Resistivity Survey in Historic Site Assessment and Management: An Example from Fort Riley, Kansas. Historical Archaeology 36(4):89110.Google Scholar
Hodgetts, Lisa, Dawson, Peter, and Eastaugh, Edward 2011. Archaeological Magnetometry in an Arctic Setting: A Case Study from Maguse Lake, Nunavut. Journal of Archaeological Science 38:17541762.Google Scholar
Johnson, Jay. K. 2006. Introduction. In Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Johnson, Jay K., pp. 116. University of Alabama Press, Tuscaloosa.Google Scholar
Johnson, Jay K., and Haley, Bryan S. 2006. A Cost-Benefit Analysis of Remote Sensing Application in Cultural Resource Management Archaeology. In Remote Sensing in Archaeology: An Explicitly North American Approach, edited by Johnson, Jay K., pp. 3345. University of Alabama Press, Tuscaloosa.Google Scholar
Kansas State Historical Society 2004. Kansas SHPO’s Guide to Archaeological Survey, Assessment, and Reports. State Historical Preservation Office. Electronic document, https://www.kshs.org/preserve/pdfs/shpos_guide_archeology.pdf, accessed July 2, 2015.Google Scholar
Kintigh, Keith W. 1988. The Effectiveness of Subsurface Testing: A Simulation Approach. American Antiquity 53:686707.Google Scholar
Kvamme, Kenneth L. 2003. Geophysical Surveys as Landscape Archaeology. American Antiquity 68:435458.Google Scholar
Kvamme, Kenneth L. 2006. Magnetometry: Nature’s Gift to Archaeology. In Remote Sensing in Archaeology: An Explicitly North American Perspective, edited by Johnson, Jay K., pp. 205233. University of Alabama Press, Tuscaloosa.Google Scholar
Le Borgne, E. 1955. Susceptibilité magnétique anormale du sol superficiel. Annales de Géophysique 11:399419.Google Scholar
Le, Borgne, E. 1960. Influence du feu sur les propriétés magnétiques du sol et sur celles du schiste et du granite. Annales de Géophysique 16:159195.Google Scholar
Lipe, William D. 1974. A Conservation Model for American Archaeology. The Kiva 39:213245.Google Scholar
Lynott, Mark J., and Wylie, Alison 1995. Ethics in American Archaeology: Challenges for the 1990s. Society of American Archaeology, Washington, D.C. Google Scholar
Maher, Barbara A., and Taylor, Reginald M. 1988. Formation of Ultrafine-Grained Magnetite in Soils. Nature 336:368371.Google Scholar
Mailloux, Auguste, and Godbout, Gérard 1954. Étude pédologique des sols des comtés de Huntingdon et Beauharnois. Division des sols, École supérieure d’Agriculture, Ste-Anne-de-la-Pocatiere. Bulletin technique no 4, Ministère de L’agriculture, Province de Québec.Google Scholar
Millaire, Jean-Francois, Eastaugh, Edward, and Hodgetts, Lisa 2015. Prospection géophysique au site iroquoien de Mailhot-Curran. In Mailhot-Curran: Un Village Iroquoien du XVIe Siècle, edited by Chapdelaine, Claude, pp. 6982. Recherches Amérindiennes au Québec, Collection Paléo-Québec 35, Montréal.Google Scholar
Nicholas, George 2008. Native Peoples and Archaeology. In Encyclopedia of Archaeology, Vol. 3, edited by Pearsall, Deborah, pp. 16601669. Elsevier, Oxford.Google Scholar
Nicholson, Bev, Pokotylo, David, and Williamson, Ron 1996. Statement of Principles for Ethical Conduct Pertaining to Aboriginal Peoples: A Report from the Aboriginal Heritage Committee. Electronic document, http://canadianarchaeology.com/caa/content/statement-principles-ethical-conduct-pertaining-aboriginal-peoples-report-aboriginal-heritag, accessed July 2, 2015.Google Scholar
Nolan, Kevin C., and Redmond, Brian G. 2015. Geochemical and Geophysical Prospecting at Three Multicomponent Sites in the Southwestern Lake Erie Basin: A Pilot Study. Journal of Archaeological Science: Reports 2:94105.Google Scholar
Nova Scotia Department of Communities, Culture and Heritage 2014. Archaeological Resource Impact Assessment (Category C) Guidelines. Electronic document, https://cch.novascotia.ca/sites/default/files/inline/documents/archaeologicalresourceimpactassessmentc.pdf, accessed July 2, 2015.Google Scholar
Ontario Ministry of Tourism, Culture and Sport 2011. Standards and Guidelines for Consultant Archaeologists. Electronic document, http://www.mtc.gov.on.ca/en/publications/SG_2010.pdf, accessed July 2, 2015.Google Scholar
Oregon State Historic Preservation Office 2007. Guidelines for Conducting Field Archaeology in Oregon. Electronic document, http://www.oregon.gov/oprd/HCD/ARCH/docs/draft_field_guidelines.pdf, accessed July 2, 2015.Google Scholar
Roos, Christopher I., and Nolan, Kevin C. 2012. Phosphates, Plowzones, and Plazas: A Minimally Invasive Approach to Settlement Structure of Plowed Village Sites. Journal of Archaeological Science 39:2332.Google Scholar
Rosendahl, Daniel, Lowe, Kelsey M., Wallis, Lynley A., and Ulm, Sean 2014. Integrating Geoarchaeology and Magnetic Susceptibility at Three Shell Mounds: a Pilot Study from Mornington Island, Gulf of Carpentaria, Australia. Journal of Archaeological Science 49:2132.Google Scholar
Scollar, Irwin, Tabbagh, Alain, Hesse, Albert, and Herzog, Irmela 1990. Archaeological Prospecting and Remote Sensing. Cambridge University Press, Cambridge.Google Scholar
Swainson, Gail 2010. First Nations Want Say in the Preservation of Important Archaeological Sites in Ontario. Toronto Star, 29 August. Electronic document, http://www.thestar.com/news/gta/2010/08/29/first_nations_want_say_in_the_preservation_of_important_archaeological_sites_in_ontario.html, accessed June 10, 2015.Google Scholar
Tite, Michael S. 1972. The Influence of Geology on the Magnetic Susceptibility of Soils on Archaeological Sites. Archaaeometry 14:229236.Google Scholar
Tite, Michael S., and Mullins, Christopher 1971. Enhancement of the Magnetic Susceptibility of Soils on Archaeological Sites. Archaeometry 12:209219.Google Scholar
Tremblay, Tommy 2008. Hydrostratigraphie et géologie du quaternaire dans le Basin Versant de la Rivière Chateauguay, Québec. Maîtrise en sciences de la Terre, UQAM, Montréal. Google Scholar
Uchida, Etsuo, Sato, Ken-Ichi, Cunin, Olivier, and Toyouchi, Kentaro 2013. A Reconsideration of the Construction Period of the Cruciform Terraces and Elevated Causeways in the Ankor Monuments, Based on Magnetic Susceptibility of the Sandstone Blocks. Archaeometry 55:10341047.Google Scholar
Union of British Columbia Indian Chiefs 2013. First Nations Heritage Planning Toolkit. Electronic document, http://www.ubcic.bc.ca/files/PDF/UBCIC_HeritageBook.pdf, accessed June 10, 2015.Google Scholar
Welch, John R., and Ferris, Neal 2014. “We Have Met the Enemy and It Is Us” Transforming Archaeology through Sustainable Design. In Transforming Archaeology: Activist Practices and Prospects, edited by Sonya Atalay, Lee R. Clauss, Randall H. McGuire, and John R. Welch, pp. 91113. Left Coast Press, Walnut Creek, California. Google Scholar
Williams-Thorpe, Olwen, Webb, Peter C., and Jones, M. Chris 2003. Non-Destructive Geochemical and Magnetic Characterisation of Group XVIII Dolerite Stone Axes and Shaft-Hole Implements from England. Journal of Archaeological Science 30(3):12371267.Google Scholar