Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T06:04:49.429Z Has data issue: false hasContentIssue false

Capturing Complexity

Toward an Integrated Low-Altitude Photogrammetry and Mobile Geographic Information System Archaeological Registry System

Published online by Cambridge University Press:  16 January 2017

Steven A. Wernke
Affiliation:
Department of Anthropology, Vanderbilt University, VU Station B #356050, 2301 Vanderbilt Place, Nashville, TN 37235 (s.wernke@ vanderbilt.edu)
Julie A. Adams
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235
Eli R. Hooten
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235

Abstract

Medium-scale archaeological phenomena (large settlements, landscape features and infrastructural systems, road networks, etc.) pose significant challenges to archaeological documentation. Traditionally, such features are mapped either schematically or via labor-intensive (or otherwise costly) high-resolution methods. The advent of inexpensive, packable unmanned aerial vehicles (UAVs) and lighter-than-air platforms, combined with increasingly sophisticated photogrammetric and mobile geographic information system (GIS) software systems, presents opportunities for improving on these compromises. Here, we present results from test flights and photogrammetric mapping using UAVs and a meteorological balloon, combined with mobile GIS-based attribute registry of architectonic features at a large, complex colonial planned settlement (Mawchu Llacta de Tuti) in highland colonial Peru. First, the operating parameters of UAVs are presented, as well as the imagery capture and photogrammetric processing work flows. Second, we provide an overview of the tablet-based mobile GIS system used to digitize a site plan (based on the imagery from the UAV) and register architectural attributes from each building. The results from initial testing suggest that in the near future, such combined close-range photogrammetry and mobile GIS-based systems will significantly enhance and expedite high-resolution data registry of a wide range of archaeological features, sites, and landscapes.

Fenómenos arqueológicos de escala media (asentamientos grandes, rasgos de paisaje y sistemas de infraestructura, redes de caminos, etc.) presentan retos significativos para la documentación arqueológica. Tradicionalmente se levantan planos de tales rasgos o esquemáticamente o por métodos de alta resolución necesitando labor intensivo (o costosos en otros sentidos). El advento de vehículos aéreos no tripulados (“drones” o UAV) económicos y portátiles, tanto como plataformas más leves del aire, combinado con sistemas de información geográfica y software fotogramétrico cada vez más sofisticado presenta oportunidades para mejorar estos compromisos. Aquí presentamos los resultados de los vuelos iniciales de prueba y ortomapeo tridimensional usando UAV y un globo meteorológico, en combinación con un Sistema de Información Geográficas (SIG) móvil para el registro de atributos de rasgos arquitectónicas en una grande y complejo asentamiento planificado colonial (Mawchu Llacta de Tuti) en la sierra suroeste del Perú. En primer lugar, se presentan los parámetros de funcionamiento de los UAV, así como la captura de imágenes y los flujos de trabajo de procesamiento fotogramétrico. En segundo lugar, ofrecemos una visión general del sistema SIG móvil utilizada para digitalizar un plano del sitio (basado en los imágenes procesados del UAV) y para registrar los atributos arquitectónicos de cada edificio y rasgos visible en la superficie del sitio. Los resultados de las pruebas iniciales sugieren que en un futuro próximo, tales sistemas combinados entre SIG móvil y fotogrametría de baja altitud mejorarán de manera significativa y acelerará el registro de datos de alta resolución de una amplia gama de sitios arqueológicos y las características del paisaje.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Aber, J. S., Sobieski, R. J., Distler, D. A., and Nowak, M. C. 1999 Kite Aerial Photography for Environmental Site Investigations in Kansas. Transactions of the Kansas Academy of Science 102(1/2):5767.Google Scholar
Agisoft 2014 PhotoScan Professional. Electronic resource, http://www.agisoft.ru, accessed November 11, 2013.Google Scholar
Ardupilot-Mega 2013 The Mission Planner Utility. Electronic resource, https://code.google.com/p/ardupilot-mega/wiki/Mission, accessed June 1, 2014.Google Scholar
ARK 2014 ARK (Archaeological Research Kit). Electronic resource, http://ark.lparchaeology.com/get-ark, accessed June 1, 2014.Google Scholar
Barsanti, Sara Gonizzi, Remondino, Fabio, and Visintini, Domenico 2012 Photogrammetry and Laser Scanning for Archaeological Site 3D Modeling—Some Critical Issues. In Proceedings of the 2nd Workshop on the New Technologies for Aquileia, edited by Fozzati, Luigi and Roberto, Vito, pp. B1B10. CEUR Workshop Proceedings, Vol. 948. Electronic document, http://ceur-ws.org/Vol-948/paper2.pdf, accessed July 24, 2014.Google Scholar
Bendea, H., Chiabrando, F., Giulio Tonolo, F., and Marenchino, D. 2007 Mapping of Archaeological Areas Using a Low-Cost UAV: The August Bagiennorum Test Site. Athens. Electronic document, http://cipa.icomos.org/fileadmin/template/doc/ATHENS/FP025.pdf, accessed May 26, 2014.Google Scholar
Bitelli, G., Girelli, V., Tini, M., and Vittuari, L. 2004 Low-Height Aerial Imagery and Digital Photogrammetrical Processing for Archaeological Mapping. Proceedings of the International Society for Photogrammetry and Remote Sensing 20:498503. Istanbul.Google Scholar
Brumana, R., Oreni, D., Van Hecke, L., Barazzetti, L., Previtali, M., Roncoroni, F., and Valente, R. 2013 Combined Geometric and Thermal Analysis from UAV Platforms for Archaeological Heritage Documentation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(5/W1):4954.Google Scholar
Casana, Jesse, Kantner, John, Wiewel, Adam, and Cothren, Jackson 2014 Archaeological Aerial Thermography: A Case Study at the Chaco-Era Blue J Community, New Mexico. Journal of Archaeological Science 45:207219.CrossRefGoogle Scholar
Castro, J. 2013 Pids and File .Param for Skywalker Wing X5. Electronic document, http://diydrones.com/group/skywalker-x5-apm-group, accessed November 11, 2013.Google Scholar
Chase, A. F., Chase, D. Z., Fisher, C. T., Leisz, S. J., and Weishampel, J. F. 2012 Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proceedings of the National Academy of Sciences of the United States of America 109(32):1291612921.CrossRefGoogle ScholarPubMed
Chiabrando, F., Nex, F., Piatti, D., and Rinaudo, F. 2011 UAV and RPV Systems for Photogrammetric Surveys in Archaeological Areas: Two Tests in the Piedmont Region (Italy). Journal of Archaeological Science 38(3):697710.Google Scholar
Chiabrando, F., and Spanò, A. 2009 Digital Wide Angle Orthoprojections and Mapping from Low-Height Aerial Images. Journal of Cultural Heritage 10(Suppl. 1):e49e58.Google Scholar
DIYdrones.com 2014 DIYdrones.com. http://diydrones.com, accessed May 28, 2014.Google Scholar
Drela, M., and Youngren, H. 2012 AVL. http://web.mit.edu/drela/Public/web/avl/, accessed November 26, 2013.Google Scholar
Eisenbess, H. 2009 UAV Photogrammetry. Unpublished Ph.D. dissertation, Eidgenössische Technische Hochschule Zürich, Zurich.Google Scholar
Eisenbess, H., Lambers, K., Sauerbrier, M., and Zhang, L. 2005 Photogrammetric Documentation of an Archaeological Site (Palpa, Peru) Using an Autonomous Model Helicopter. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(5/C34):238243.Google Scholar
Everaerts, J. 2008 The Use of Unmanned Aerial Vehicles (UAVs) for Remote Sensing and Mapping. Remote Sensing Spatial Information Sciences 37(B1):11871192.Google Scholar
Fallavollita, P., Balsi, M., Esposito, S., Melis, M. G., Milanese, M., and Zappino, L. 2013 UAS for Archaeology—New Perspectives on Aerial Documentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 60(1/W2):131135.Google Scholar
Federated Archaeological Information Management System 2014 About. Electronic document, https://www.fedarch.org/wordpress/mission/, accessed June 5, 2014.Google Scholar
Flightriot.com 2014 Flight Riot: Advocating UAV and Geospatial Technologies. Electronic document, http://flightriot.com, accessed July 21, 2014.Google Scholar
Garafa, Inc. 2013 GIS Pro. Electronic resource, http://garafa.com/wordpress/all-apps/gis-pro, accessed May 20, 2013.Google Scholar
Glennie, Craig, Brooks, Benjamin, Ericksen, Todd, Hauser, Darren, Hudnut, Kenneth, Foster, James, and Avery, Jon 2013 Compact Multipurpose Mobile Laser Scanning System—Initial Tests and Results. Remote Sensing 5:521538.Google Scholar
Goldstein, Paul S. 2000 Communities Without Borders: The Vertical Archipelago and Diaspora Communities in the Southern Andes. In The Archaeology of Communities, edited by Canuto, Marcello A. and Yaeger, Jason, pp. 182209. Routledge, New York.Google Scholar
Haubek, K., and Prinz, T. 2013 A UAV-Based Low-Cost Stereo Camera System for Archaeological Surveys—Experiences from Doliche (Turkey). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40(1/W2):195200.Google Scholar
Hesse, Ralf 2013 Using Structure-from-Motion to Document Threats to Archaeological Heritage in Coastal Peru. Electronic document, https://www.academia.edu/4610499/Using_structure-from-motion_to_document_threats_to_archaeological_heritage_in_coastal_Peru, accessed May 5, 2014.Google Scholar
Hooten, Eli R., Wulfe, Blake W., Wernke, Steven A., and Adams, Julie A. 2014 Environmental Effects on the Operation of Micro Unmanned Aerial Vehicles. Manuscript on file, Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville.Google Scholar
Ioannides, Marinos, Fritsch, Dieter, Leissner, Johanna, Davies, Rob, Remondino, Fabio, and Caffo, Rossella (editors) 2012 Progress in Cultural Heritage Preservation. 4th International Conference, EuroMed 2012 Limassol, Cyprus, October 29–November 3, 2012 Proceedings. Springer, New York.Google Scholar
Jaakkola, Anttoni, Hyyppä, Juha, Kukko, Antero, Yu, Xiaowei, Kaartinen, Harri, Lehtomäki, Matti, and Lin, Yi 2010 A Low-Cost Multi-Sensoral Mobile Mapping System and Its Feasibility for Tree Measurements. ISPRS Journal of Photogrammetry and Remote Sensing 65:514522.Google Scholar
Lambers, K., Eisenbeiss, H., Sauerbier, M., Kupferschmidt, D., Gaisecker, T., Sotoodeh, S., and Hanusch, T. 2007 Combining Photogrammetry and Laser Scanning for the Recording and Modeling of the Late Intermediate Period Site of Pinchango Alto, Palpa, Peru. Journal of Archaeological Science 34:17021712.Google Scholar
Lin, Y., Hyyppa, J., and Jaakkola, A. 2011 Mini-UAV-Borne LIDAR for Fine-Scale Mapping. IEEE Geoscience and Remote Sensing Letters 8(3):426430.CrossRefGoogle Scholar
Mozas-Calvache, A. T., Pérez-García, J. L., Cardenal-Escarcena, F. J., Mata-Castro, E., and Delgado-García, J. 2012 Method for Photogrammetric Surveying of Archaeological Sites with Light Aerial Platforms. Journal of Archaeological Science 39(2):521530.Google Scholar
Müller, M. 2013 eCalc—The Most Reliable RC Calculators on the Web for Electric Motors. Electronic document, http://ecalc.ch/, accessed November 13, 2013.Google Scholar
Popper, B. 2013 How 3D Robotics Is Building for America’s Drone-Filled Future. Electronic document, http://www.theverge.com/2013/9/27/4776692/3d-robotics-chris-anderson-explains-the-next-step-for-his-drone-empire, accessed November 4, 2013.Google Scholar
QGIS 2014 QGIS: A Free and Open Source Geographic Information System. Electronic document, http://www.qgis.org/en/site/, accessed July 30, 2014.Google Scholar
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., and Sarazzi, D. 2011 UAV Photogrammetry for Mapping and 3D Modeling: Current Status and Future Perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38(1/C22):2531.Google Scholar
Sauerbier, M., and Eisenbess, H. 2010 UAVs for the Documentation of Archaeological Excavations. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38(5):526531.Google Scholar
Theodoridou, S., Tokmakidis, K., and Skarlatos, D. 2000 Use of Radio-Controlled Model Helicopters in Archaeology Surveying and in Building Construction Industry. International Archives of Photogrammetry and Remote Sensing 33(B5/2):825829.Google Scholar
Tripcevich, Nicholas, and Wernke, Steven A. 2010 On-Site Recording of Excavation Data Using Mobile GIS. Journal of Field Archaeology 35(4):380397.Google Scholar
Verhoeven, G. J. J. 2009 Providing an Archaeological Bird’s-Eye View—An Overall Picture of Ground-Based Means to Execute Low-Altitude Aerial Photography (LAAP) in Archaeology. Archaeological Prospection 16(4):233249.Google Scholar
Verhoeven, G., Taelman, D., and Vermeulen, F. 2012 Computer Vision-Based Orthophoto Mapping of Complex Archaeological Sites: The Ancient Quarry of Pitaranha (Portugal-Spain). Archaeometry 54(6):11141129.Google Scholar
Wiechert, Alexander, and Gruber, Michael 2009 Aerial Perspective: Photogrammetry Versus Lidar. Professional Surveyor Magazine 29(8). Electronic document, http://archives.profsurv.com/magazine/article.aspx?i=70305, accessed July 20, 2014.Google Scholar
Wu, Changchang 2013 VisualSFM: A Visual Structure from Motion System. Electronic document, http://ccwu.me/vsfm/, accessed November 13, 2013.Google Scholar