Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T01:55:24.642Z Has data issue: false hasContentIssue false

Windings of planar processes, exponential functionals and Asian options

Published online by Cambridge University Press:  16 November 2018

Wissem Jedidi*
Affiliation:
King Saud University and Université de Tunis El Manar
Stavros Vakeroudis*
Affiliation:
University of the Aegean
*
* Postal address: Department of Statistics & OR, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia. Email address: [email protected]
** Postal address: Department of Mathematics, University of the Aegean, Vourliotis Building, Office Y5, 83200 Karlovasi, Samos, Greece. Email address: [email protected]

Abstract

Motivated by a common mathematical finance topic, we discuss the reciprocal of the exit time from a cone of planar Brownian motion which also corresponds to the exponential functional of Brownian motion in the framework of planar Brownian motion. We prove a conjecture of Vakeroudis and Yor (2012) concerning infinite divisibility properties of this random variable and present a novel simple proof of the result of DeBlassie (1987), (1988) concerning the asymptotic behavior of the distribution of the Bessel clock appearing in the skew-product representation of planar Brownian motion, as t→∞. We use the results of the windings approach in order to obtain results for quantities associated to the pricing of Asian options.

Type
Original Article
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alili, L., Dufresne, D. and Yor, M. (1997). Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matematica, Madrid, pp. 314.Google Scholar
[2]André, D. (1887). Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris 105, 436437.Google Scholar
[3]Bertoin, J. and Werner, W. (1996). Stable windings. Ann. Prob. 24, 12691279.Google Scholar
[4]Bertoin, J. and Yor, M. (2005). Exponential functionals of Lévy processes. Prob. Surveys 2, 191212.Google Scholar
[5]Biane, P. and Yor, M. (1987). Valeurs principales associées aux temps locaux Browniens. Bull. Sci. Math. 111, 23101.Google Scholar
[6]Bondesson, L. (1992). Generalized Gamma Convolutions and Related Classes of Distributions and Densities (Lecture Notes Statist. 76). Springer, New York.Google Scholar
[7]Bondesson, L. (2015). A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables. J. Theoret. Prob. 28, 10631081.Google Scholar
[8]Bosch, P. and Simon, T. (2015). On the infinite divisibility of inverse beta distributions. Bernoulli 21, 25522568.Google Scholar
[9]Bougerol, P. (1983). Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré B 19, 369391.Google Scholar
[10]DeBlassie, R. D. (1987). Exit times from cones in ℝn of Brownian motion. Prob. Theory Relat. Fields 74, 129.Google Scholar
[11]DeBlassie, R. D. (1988). Remark on exit times from cones in ℝn of Brownian motion. Prob. Theory Relat. Fields 79, 9597.Google Scholar
[12]Doney, R. A. and Vakeroudis, S. (2013). Windings of planar stable processes. In Séminaire de Probabilités XLV (Lecture Notes Math. 2078), Springer, Cham, pp. 277300.Google Scholar
[13]Dufresne, D. (2000). Laguerre series for Asian and other options. Math. Finance 10, 407428.Google Scholar
[14]Gallardo, L. (2008). Mouvement Brownien et Calcul d'Itô. Hermann, Paris.Google Scholar
[15]Graversen, S. E. and Vuolle-Apiala, J. (1986). α-self-similar Markov processes. Prob. Theory Relat. Fields 71, 149158.Google Scholar
[16]Itô, K. and McKeanH. P., Jr. H. P., Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin.Google Scholar
[17]Kyprianou, A. E. and Vakeroudis, S. M. (2018). Stable windings at the origin. To appear in Stoch. Process. Appl..Google Scholar
[18]Liao, M. and Wang, L. (2011). Isotropic self-similar Markov processes. Stoch. Process. Appl. 121, 20642071.Google Scholar
[19]Matsumoto, H. and Yor, M. (2005). Exponential functionals of Brownian motion. I. Probability laws at fixed time. Prob. Surveys 2, 312347.Google Scholar
[20]Matsumoto, H. and Yor, M. (2005). Exponential functionals of Brownian motion. II. Some related diffusion processes. Prob. Surveys 2, 348384.Google Scholar
[21]Messulam, P. and Yor, M. (1982). On D. Williams' 'pinching method' and some applications. J. London Math. Soc. 2 26, 348364.Google Scholar
[22]Pitman, J. and Yor, M. (1986). Asymptotic laws of planar Brownian motion. Ann. Prob. 14, 733779.Google Scholar
[23]Port, S. C. and Stone, C. J. (1978). Brownian Motion and Classical Potential Theory. Academic Press, New York.Google Scholar
[24]Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.Google Scholar
[25]Schilling, R. L., Song, R. and Vondraček, Z. (2012). Bernstein Functions: Theory and Applications, 2nd edn. De Gruyter, Berlin.Google Scholar
[26]Spitzer, F. (1958). Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87, 187197.Google Scholar
[27]Vakeroudis, S. (2011). Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymère. Doctoral thesis. Université Pierre et Marie Curie.Google Scholar
[28]Vakeroudis, S. (2012). Bougerol's identity in law and extensions. Prob. Surveys 9, 411437.Google Scholar
[29]Vakeroudis, S. (2012). On hitting times of the winding processes of planar Brownian motion and of Ornstein–Uhlenbeck processes, via Bougerol's identity. Theory Prob. Appl. 56, 485507.Google Scholar
[30]Vakeroudis, S. and Yor, M. (2012). Some infinite divisibility properties of the reciprocal of planar Brownian motion exit time from a cone. Electron. Commun. Prob. 17, 23.Google Scholar
[31]Vakeroudis, S. and Yor, M. (2013). Integrability properties and limit theorems for the exit time from a cone of planar Brownian motion. Bernoulli 19, 20002009.Google Scholar
[32]Whitt, W. (1980). Some useful functions for functional limit theorems. Math. Operat. Res. 5, 6785.Google Scholar
[33]Williams, D. (1974). A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion. Unpublished manuscript.Google Scholar
[34]Yor, M. (1980). Loi de l'indice du lacet Brownien, et distribution de Hartman-Watson. Z. Wahrscheinlichkeitsth. 53, 7195.Google Scholar
[35]Yor, M. (1992). Sur les lois des fonctionnelles exponentielles du mouvement Brownien, considérées en certains instants aléatoires. C. R. Acad. Sci. Paris I 314, 951956.Google Scholar
[36]Yor, M. (1993). From planar Brownian windings to Asian options. Insurance Math. Econom. 13, 2334.Google Scholar
[37]Yor, M. (2001). Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin.Google Scholar
[38]Yor, M. and Geman, H. (2001). Bessel processes, Asian options, and perpetuities. In Exponential Functionals of Brownian Motion and Related Processes, Springer, Berlin, pp. 6392.Google Scholar