Article contents
Volume degeneracy of the typical cell and the chord length distribution for Poisson-Voronoi tessellations in high dimensions
Published online by Cambridge University Press: 01 July 2016
Abstract
This paper is devoted to the study of some asymptotic behaviors of Poisson-Voronoi tessellation in the Euclidean space as the space dimension tends to ∞. We consider a family of homogeneous Poisson-Voronoi tessellations with constant intensity λ in Euclidean spaces of dimensions n = 1, 2, 3, …. First we use the Blaschke-Petkantschin formula to prove that the variance of the volume of the typical cell tends to 0 exponentially in dimension. It is also shown that the volume of intersection of the typical cell with the co-centered ball of volume u converges in distribution to the constant λ−1(1 − e−λu). Next we consider the linear contact distribution function of the Poisson-Voronoi tessellation and compute the limit when the space dimension goes to ∞. As a by-product, the chord length distribution and the geometric covariogram of the typical cell are obtained in the limit.
Keywords
MSC classification
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 2008
References
- 12
- Cited by