Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:16:04.633Z Has data issue: false hasContentIssue false

Translation-Equivariant Matchings of Coin Flips on ℤd

Published online by Cambridge University Press:  01 July 2016

Terry Soo*
Affiliation:
University of British Columbia
*
Postal address: Department of Mathematics, University of British Columbia, Vancouver BC, V6T 1Z2, Canada. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider independent fair coin flips at each site of the lattice ℤd. A translation-equivariant matching rule is a perfect matching of heads to tails that commutes with translations of ℤd and is given by a deterministic function of the coin flips. Let ZΦ be the distance from the origin to its partner, under the translation-equivariant matching rule Φ. Holroyd and Peres (2005) asked, what is the optimal tail behaviour of ZΦ for translation-equivariant perfect matching rules? We prove that, for every d ≥ 2, there exists a translation-equivariant perfect matching rule Φ such that EZΦ2/3-ε < ∞ for every ε > 0.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2010 

References

Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (1999). Group-invariant percolation on graphs. Geom. Funct. Anal. 9, 2966.Google Scholar
Ferrari, P. A., Landim, C. and Thorisson, H. (2004). Poisson trees, succession lines and coalescing random walks. Ann. Inst. H. Poincaré Prob. Statist. 40, 141152.Google Scholar
Häggström, O. (1997). Infinite clusters in dependent automorphism invariant percolation on trees. Ann. Prob. 25, 14231436.Google Scholar
Hoffman, C., Holroyd, A. E. and Peres, Y. (2006). A stable marriage of Poisson and Lebesgue. Ann. Prob. 34, 12411272.CrossRefGoogle Scholar
Hoffman, C., Holroyd, A. E. and Peres, Y. (2009). Tail bounds for the stable marriage of Poisson and Lebesgue. Canad. J. Math. 61, 12791299.Google Scholar
Holroyd, A. E. and Liggett, T. M. (2001). How to find an extra head: optimal random shifts of Bernoulli and Poisson random fields. Ann. Prob. 29, 14051425.Google Scholar
Holroyd, A. E. and Peres, Y. (2003). Trees and matchings from point processes. Electron. Commun. Prob. 8, 1727.CrossRefGoogle Scholar
Holroyd, A. E. and Peres, Y. (2005). Extra heads and invariant allocations. Ann. Prob. 33, 3152.Google Scholar
Holroyd, A. E., Pemantle, R., Peres, Y. and Schramn, O. (2009). Poisson matching. Ann. Inst. H. Poincaré Prob. Statist. 45, 266287.CrossRefGoogle Scholar
Meshalkin, L. (1959). A case of isomorphism of Bernouli schemes. Dokl. Akad. Nauk. SSSR 128, 4144.Google Scholar
Nazarov, F., Sodin, M. and Volberg, A. (2007). Transportation to random zeroes by the gradient flow. Geom. Funct. Anal. 17, 887935.Google Scholar
Timár, A. (2009). Invariant matchings of exponential tail on coin flips in Z d . Preprint. Available at http://arxiv.org/abs/0909.1009v1.Google Scholar
Timár, A. (2004). Trees and grid factors for general point processes. Electron. Commun. Prob. 9, 5359.CrossRefGoogle Scholar