Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:33:29.806Z Has data issue: false hasContentIssue false

Stretch factor in a planar Poisson–Delaunay triangulation with a large intensity

Published online by Cambridge University Press:  20 March 2018

Nicolas Chenavier*
Affiliation:
Université du Littoral Côte d'Opale
Olivier Devillers*
Affiliation:
INRIA, CNRS, Université de Lorraine
*
* Postal address: LMPA Joseph Liouville, Université du Littoral Côte d'Opale, 50 rue Ferdinand Buisson, BP 699, 62228 Calais Cedex, France. Email address: [email protected]
** Postal address: Université de Lorraine, 615 rue du Jardin Botanique, B.P. 101, 54602 Villers-lès-Nancy Cedex, France. Email address: [email protected]

Abstract

Let X := X n ∪ {(0, 0), (1, 0)}, where X n is a planar Poisson point process of intensity n. We provide a first nontrivial lower bound for the distance between the expected length of the shortest path between (0, 0) and (1, 0) in the Delaunay triangulation associated with X when the intensity of X n goes to ∞. Simulations indicate that the correct value is about 1.04. We also prove that the expected length of the so-called upper path converges to 35 / 3π2, yielding an upper bound for the expected length of the smallest path.

Type
Original Article
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aurenhammer, F., Klein, R. and Lee, D.-T. (2013). Voronoi Diagrams and Delaunay Triangulations. World Scientific, Hackensack, NJ. CrossRefGoogle Scholar
[2] Baccelli, F., Tchoumatchenko, K. and Zuyev, S. (2000). Markov paths on the Poisson-Delaunay graph with applications to routing in mobile networks. Adv. Appl. Prob. 32, 118. Google Scholar
[3] Bose, P. and Devroye, L. (2007). On the stabbing number of a random Delaunay triangulation. Comput. Geom. 36, 89105. Google Scholar
[4] Bose, P. and Morin, P. (2004). Online routing in triangulations. SIAM J. Comput. 33, 937951. Google Scholar
[5] Calka, P. (2002). The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Prob. 34, 702717. Google Scholar
[6] Cazals, F. and Giesen, J. (2006). Delaunay triangulation based surface reconstruction. In Effective Computational Geometry for Curves and Surfaces, Springer, Berlin, pp. 231276. Google Scholar
[7] Chenavier, N. and Devillers, O. (2016). Stretch factor of long paths in a planar Poisson-Delaunay triangulation. Res. Rep. 8935, INRIA. Google Scholar
[8] Cheng, S.-W., Dey, T. K. and Shewchuk, J. R. (2013). Delaunay Mesh Generation. Chapman & Hall/CRC, Boca Raton, FL. Google Scholar
[9] Cox, J. T., Gandolfi, A., Griffin, P. S. and Kesten, H. (1993). Greedy lattice animals. I. Upper bounds. Ann. Appl. Prob. 3, 11511169. Google Scholar
[10] De Castro, P. M. M. and Devillers, O. (2018). Expected length of the Voronoi path in a high dimensional Poisson–Delaunay triangulation. Discrete Comput. Geom. 120. Available at https://doi.org/10.1007/s00454-017-9866-y. Google Scholar
[11] Devillers, O. and Hemsley, R. (2016). The worst visibility walk in random Delaunay triangulation is O(√n). J. Comput. Geom. 7, 332359. Google Scholar
[12] Devillers, O. and Noizet, L. (2016). Walking in a planar Poisson-Delaunay triangulation: shortcuts in the Voronoi path. Res. Rep. 8946, INRIA. Google Scholar
[13] Devillers, O., Pion, S. and Teillaud, M. (2002). Walking in a triangulation. Internat. J. Found. Comput. Sci. 13, 181199. CrossRefGoogle Scholar
[14] Devroye, L., Lemaire, C. and Moreau, J.-M. (2004). Expected time analysis for Delaunay point location. Comput. Geom. 29, 6189. Google Scholar
[15] Dobkin, D. P., Friedman, S. J. and Supowit, K. J. (1990). Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5, 399407. CrossRefGoogle Scholar
[16] Gerard, Y., Vacavant, A. and Favreau, J.-M. (2016). Tight bounds in the quadtree complexity theorem and the maximal number of pixels crossed by a curve of given length. Theoret. Comput. Sci. 624, 4155. CrossRefGoogle Scholar
[17] Hirsch, C., Neuhä;user, D. and Schmidt, V. (2016). Moderate deviations for shortest-path lengths on random segment processes. ESAIM Prob. Statist. 20, 261292. CrossRefGoogle Scholar
[18] Keil, J. M. and Gutwin, C. A. (1989). The Delaunay triangulation closely approximates the complete Euclidean graph. In Algorithms and Data Structures (Lecture Notes Comput. Sci. 382), Springer, Berlin, pp. 4756. Google Scholar
[19] Penrose, M. (2003). Random Geometric Graphs. Oxford University Press. Google Scholar
[20] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin. CrossRefGoogle Scholar
[21] Thä;le, C. and Yukich, J. E. (2016). Asymptotic theory for statistics of the Poisson-Voronoi approximation. Bernoulli 22, 23722400. Google Scholar
[22] Xia, G. (2013). The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput. 42, 16201659. Google Scholar
[23] Xia, G. and Zhang, L. (2011). Toward the tight bound of the stretch factor of Delaunay triangulations. In Proceedings 23th Canadian Conference on Computational Geometry, 6 pp. Google Scholar
[24] Yukich, J. E. (2015). Surface order scaling in stochastic geometry. Ann. Appl. Prob. 25, 177210. Google Scholar