Published online by Cambridge University Press: 01 July 2016
An asymptotic theory of estimation is developed for classes of spatial series F(x1, · ··, xn), where (x1, · ··, xn) varies over a regular cartesian lattice. Two classes of unilateral models are studied, namely half-space models and causal (quadrant-type) models. It is shown that a number of asymptotic results are common for these models. Of special interest for practical applications is the problem of determining how many parameters should be included to describe the degree of dependence in each direction. Here we are able to obtain weakly consistent generalizations of familiar time-series criteria under the assumption that the generating variables of the model are independently and identically distributed. For causal models we introduce the concepts of spatial innovation process and lattice martingale and use these to extend some of the asymptotic theory to the case where a certain type of dependence is permitted in the generating variables.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.