Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T20:13:21.547Z Has data issue: false hasContentIssue false

Stability theorems

Published online by Cambridge University Press:  01 July 2016

Eugene Lukacs*
Affiliation:
Bowling Green State University

Abstract

A stability theorem determines the extent to which the conclusions of a given theorem are affected if the assumptions of the theorem are not exactly but only approximately satisfied. The meaning of the word ‘approximately’ has to be defined exactly. The stability of decomposition theorems, of characterizations by independence and by regression properties are the primary object of the paper.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Azlarov, T. A. (1972) Stability of characterizing properties of the exponential distribution (Russian). Litovsk Mat. Sb. 12, 59.Google Scholar
[2] Azlarov, T. A., Dzamirzaev, A. A. and Sultanova, M. M. (1972) Characterizing properties of the exponential distribution and their stability (Russian). Random Processes and Statistical Inference II, Izdat. Fan. Tashkent, 1019.Google Scholar
[3] Bednarek-Kozek, B. and Kozek, A. (1972) On the robustness of properties characterizing the normal distribution. Zast. Mat. (Applicationes Mathematicae) 13, 215230.CrossRefGoogle Scholar
[4] Beer, S. and Lukacs, E. (1971) On the robustness of the distribution of a quotient. 38th Session, Internat. Statist. Inst., Washington D.C., Contributed Papers, 3235.Google Scholar
[5] Beer, S. and Lukacs, E. (1972) Remarks concerning a stability theorem for a characterization of the Gamma distribution. Period. Math. Hungar. 2, 129132.Google Scholar
[6] Beer, S. and Lukacs, E. (1974) Stability theorems for a characterization of the Poisson distribution. Teor. Verojatnost. i Primenen 19, 689699; Theor. Prob. Appl. 19 (1974), 656–668.Google Scholar
[7] Bernstein, S. N. (1941) Sur une propriété de la loi de Gauss. Trudy Leningrad. Technolog. Inst. Holod. Promysl. 3, 2122.Google Scholar
[8] čistjakov, G. P. (1969) Stability for the theorem of Yu. V. Linnik. Teor. Funkcii Funkcional. Anal. i Prilozen. 9, 118133.Google Scholar
[9] Cramér, H. (1936) Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Z. 41, 405414.Google Scholar
[10] Cuppens, R. (1963) Sur la stabilité des décompositions en arithmétique des lois de probabilité. C.R. Acad. Sci. Paris 256, 35603561.Google Scholar
[11] Cuppens, R. (1968) Sur la notion de stabilité en arithmétique des lois de probabilité. C.R. Acad. Sci. Paris A 267, 10001002.Google Scholar
[12] Esseen, C. G. (1944) Fourier analysis of distribution functions. Acta Math. 77, 1125.Google Scholar
[13] Feller, W. (1966) An Introduction to Probability Theory and its Applications, Vol. 2. Wiley, New York.Google Scholar
[14] Gabovic, Yu. R. (1972) The effect of the stability of the characterization of the normal distribution in a theorem of S. N. Bernstein. Dokl. Akad. Nauk SSSR 205, 315. English translation: Soviet Math. Dokl. 13 (1972), 861–863.Google Scholar
[15] Gabovic, Yu. R. (1974) On the stability of certain characteristic properties of the normal distribution. Teor. Verojatnost. i Primenen. 19, 374382. English translation: Theor. Prob. Appl. 19 (1974), 365–371.Google Scholar
[16] Geary, R. C. (1936) Distribution of Student's ratio in nonnormal samples. J. R. Statist. Soc. Suppl. B 3, 178184.CrossRefGoogle Scholar
[17] Nhu, Hoang Huu (1966) On the stability of certain theorems characterizing the normal distribution. Internat. Congr. Math. Moscow 1966, Inf. Bull. 6.Google Scholar
[18] Nhu, Hoang Huu (1968) The estimation of the stability of a characterization of the exponential distribution. Litovsk. Mat. Sb. 8, 175177. English translation: Selected Trans. Math. Statist. Prob. 11 (1973), 216-218.Google Scholar
[19] Nhu, Hoang Huu (1968) On the stability of certain characterizations of a normal population. Teor. Verojatnost. i Primenen. 13, 308314. English translation: Theory Prob. Appl. 13 (1968), 299–304.Google Scholar
[20] Kallenberg, O. (1972) Stability in the decomposition of probability measures with finite support. Z. Wahrscheinlichkeitsth. 23, 216223.Google Scholar
[21] Kawata, T. and Sakamoto, H. (1949) On the characterization of the normal population by the independence of the sample mean and the sample variance. J. Math. Soc. Japan 1, 111115.CrossRefGoogle Scholar
[22] Laha, R. G. and Lukacs, E. (1960) On a problem connected with quadratic regression. Biometrika 47, 335343.Google Scholar
[23] Laha, R. G. and Lukacs, E. (1960) On a characterization of the Wiener process. Trans. 2nd Prague Conf., Czechoslovak Academy of Sciences, Prague.Google Scholar
[24] Lévy, P. (1937) Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris.Google Scholar
[25] Linnik, Yu. V. (1957) On the factorization of compositions of Gauss and Poisson laws. Teor. Verojatnost. i Primenen. 2, 3459. English translation: Theory Prob. Appl. 2 (1957), 31–57.Google Scholar
[26] Linnik, Yu. V. (1960) Razlozenie verojatnostih zakonov. Izdat. Leningrad. Univ. English translation: Decomposition of Probability Laws (1964), Oliver and Boyd, Edinburgh and London.Google Scholar
[27] Lukacs, E. (1942) A characterization of the normal distribution. Ann. Math. Statist. 13, 9193.Google Scholar
[28] Lukacs, E. (1961) On the characterization of a family of populations which includes the Poisson population. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3–4, 159175.Google Scholar
[29] Lukacs, E. and Laha, R. G. (1964) Applications of Characteristic Functions. Griffin, London.Google Scholar
[30] Lukacs, E. (1970) Characteristic Functions, 2nd edn. Griffin, London.Google Scholar
[31] Lukacs, E. (1972) Stability theorems for characterization by constant regression. Period. Math. Hungar. 2, 111128.Google Scholar
[32] Lukacs, E. (1976) Über die Stabilität einer Charakterisierung der Normalverteilung. Sitzungsber. Öst. Akad, Wiss. Google Scholar
[33] Lukacs, E. (1977) A stability theorem for a characterization of the Wiener distribution. Transactions of the 7th Prague Conference. To appear.Google Scholar
[34] Mačis, Ju. Ju. (1967) On the stability of Raikov's theorem (Russian) Litovsk Mat. Sb. 14, 123127.Google Scholar
[35] Mačis, Ju. Ju. (1969) On the stability of the decomposition of the unit distribution law. Teor. Verojatnost. i Primenen. 14, 715718. English translation: Theory Prob. Appl. 14 (1969), 688–690.Google Scholar
[36] Macis, Ju. Ju. (1971) Estimates of the stability theorems for decompositions of the Poisson distribution. Teor. Verojatnost. i Primenen. 16, 218228. English translation: Theory Prob. Appl. 16 (1971), 215–227.Google Scholar
[37] Mačis, Ju. Ju. (1973) On the stability of decompositions of the two point distribution (Russian). Litovsk Mat. Sb. 13, 131138.Google Scholar
[38] Mačis, Ju. Ju. (1974) On the problem of quantitative stability of the decomposition of the binomial law (Russian). Litovsk Mat. Sb. 14, 123127.Google Scholar
[39] Maloshevskii, S. G. (1967) A distribution function whose moments are close to those of a normal law. Mat. Zametki 2, 627633. English translation: Math. Notes 2 (1967), 870–874.Google Scholar
[40] Maloshevskii, S. G. (1968) Sharpness of an estimate of N. A. Sapogov on the stability problem of Cramér's theorem. Teor. Verojatnost. i Primenen. 13, 522525. English translation: Theory Prob. Appl. 13 (1968) 494–496.Google Scholar
[41] Meshalkin, L. D. (1968) On the robustness of some characterizations of the normal distribution. Ann. Math. Statist. 39, 17471750.Google Scholar
[42] Nhu, Hoang Huu, see Nhu, Hoang Huu.Google Scholar
[43] Ostrovskii, I. V. (1965) On the factorization of the convolution of laws of Gauss and Poisson (Russian). Uspehi Mat. Nauk 20, 166171.Google Scholar
[44] Raikov, D. A. (1938) On the decomposition of Gauss and Poisson laws (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 2, 91124.Google Scholar
[45] Ramachandran, B. (1963) A stability theorem for the binomial law. Sankhyā A 25, 8590.Google Scholar
[46] Rao, C. R. (1967) On some characterizations of the normal law. Sankhyā A 29, 114.Google Scholar
[47] Šalaevskii, O. V. (1959) Stability in Raikov's theorem. Vestnik Leningrad Univ. Mat. Meh. Astronom. 14, 4149. English translation: Selected Trans. Math. Statist. Prob. 4 (1963), 233–244.Google Scholar
[48] Sapogov, N. A. (1950) On a property of the Gaussian distribution law. Dokl. Akad. Nauk SSSR NS 73, 461462.Google Scholar
[49] Sapogov, N. A. (1951) The stability problem for a theorem of Cramér. Izv. Akad. Nauk SSSR Ser. Mat. 15, 205218. English translation: Selected Trans. Math. Statist. Prob. 1 (1961), 41–53.Google Scholar
[50] Sapogov, N. A. (1955) The problem of stability for a theorem of Cramér. Vestnik Leningrad Univ. Mat. Meh. Astronom. 10, 6164.Google Scholar
[51] Sapogov, N. A. (1959) On independent terms of a sum of random variables which is distributed almost normally. Vestnik Leningrad Univ. Mat. Meh. Astronom. 14, 78105. English translation: Selected Trans. Math. Statist. Prob. 5 (1965), 1–31.Google Scholar
[52] Zinger, A. A. (1951) On independent samples from a normal population (Russian). Uspehi Mat. Nauk NS 6, 172175.Google Scholar
[53] Zolotarev, V. M. (1968) On the problem of stability of the decomposition of the normal law into components. Teor. Verojatnost. i Primenen. 13, 738742. English translation: Theory Prob. Appl. 13 (1968) 697–700.Google Scholar
[54] Zolotarev, V. M. (1970) Some new inequalities in probability connected with the Lévy metric. Dokl. Akad. Nauk SSSR 190, 10191021. English translation: Soviet Math. Dokl. 11 (1970) 231–234.Google Scholar
[55] Zolotarev, V. M. (1971) Estimates of the difference between distributions in the Lévy metric. Trudy Steklov 112, 224231. English translation: Proc. Steklov Inst. 112 (1971), 232–240.Google Scholar
* No English translation of these Russian papers was available at the time this paper was written.Google Scholar