No CrossRef data available.
Published online by Cambridge University Press: 31 January 2025
We introduce and study a game-theoretic model to understand the spread of an epidemic in a homogeneous population. A discrete-time stochastic process is considered where, in each epoch, first, a randomly chosen agent updates their action trying to maximize a proposed utility function, and then agents who have viral exposures beyond their immunity get infected. Our main results discuss asymptotic limiting distributions of both the cardinality of the subset of infected agents and the action profile, considered under various values of two parameters (initial action and immunity profile). We also show that the theoretical distributions are almost always achieved in the first few epochs.