Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T18:16:15.508Z Has data issue: false hasContentIssue false

Spatio-temporal variograms and covariance models

Published online by Cambridge University Press:  01 July 2016

Chunsheng Ma*
Affiliation:
Wichita State University
*
Postal address: Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260-0033, USA. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Variograms and covariance functions are the fundamental tools for modeling dependent data observed over time, space, or space-time. This paper aims at constructing nonseparable spatio-temporal variograms and covariance models. Special attention is paid to an intrinsically stationary spatio-temporal random field whose covariance function is of Schoenberg-Lévy type. The correlation structure is studied for its increment process and for its partial derivative with respect to the time lag, as well as for the superposition over time of a stationary spatio-temporal random field. As another approach, we investigate the permissibility of the linear combination of certain separable spatio-temporal covariance functions to be a valid covariance, and obtain a subclass of stationary spatio-temporal models isotropic in space.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2005 

References

Anh, V. V., Leonenko, N. N. and Sakhno, L. M. (2003). Higher-order spectral densities of fractional random fields. J. Statist. Phys. 111, 789814.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics (with discussion). J. R. Statist. Soc. B 63, 167241.CrossRefGoogle Scholar
Bartlett, M. S. (1975). The Statistical Analysis of Spatial Pattern. Chapman and Hall, London.Google Scholar
Berg, C. and Forst, G. (1975). Potential Theory on Locally Compact Abelian Groups. Springer, New York.CrossRefGoogle Scholar
Berg, C., Christensen, J. P. R. and Ressel, P. (1984). Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions. Springer, New York.CrossRefGoogle Scholar
Bochner, S. (1955). Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley, CA.CrossRefGoogle Scholar
Brown, P. E., Karesen, K. F., Roberts, G. O. and Tonellato, S. (2000). Blur-generated non-separable space-time models. J. R. Statist. Soc. B 62, 847860.CrossRefGoogle Scholar
Buell, C. E. (1972). Correlation functions for wind and geopotential on isobaric surfaces. J. Appl. Meteorol. 11, 5159.2.0.CO;2>CrossRefGoogle Scholar
Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. John Wiley, New York.CrossRefGoogle Scholar
Christakos, G. (1984). On the problem of permissible covariance and variogram models. Water Resources Res. 20, 251265.CrossRefGoogle Scholar
Cressie, N. (1993). Statistics for Spatial Data. John Wiley, New York.CrossRefGoogle Scholar
Cressie, N. and Huang, H. C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94, 13301340. (Correction: 96 (2001), 784.)CrossRefGoogle Scholar
De Iaco, S., Myers, D. E. and Posa, D. (2002). Nonseparable space–time covariance models: some parametric families. Math. Geol. 34, 2342.CrossRefGoogle Scholar
Doob, J. L. (1944). The elementary Gaussian processes. Ann. Math. Statist. 15, 229282.CrossRefGoogle Scholar
Gangolli, R. (1967a). Abstract harmonic analysis and Lévy's Brownian motion of several parameters. In Proc. Fifth Berkeley Symp. Math. Statist. Prob. (Berkeley, CA, 1965/66), Vol. 2, University of California Press, Berkeley, CA, pp. 1330.Google Scholar
Gangolli, R. (1967b). Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. H. Poincaré B 3, 121226.Google Scholar
Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quart. J. R. Meteorol. Soc. 125, 723757.CrossRefGoogle Scholar
Gneiting, T. (1998). On α-symmetric multivariate characteristic functions. J. Multivariate Anal. 64, 131147.CrossRefGoogle Scholar
Gneiting, T. (2002). Nonseparable, stationary covariance functions for space–time data. J. Amer. Statist. Assoc. 97, 590600.CrossRefGoogle Scholar
Gneiting, T., Sasvari, Z. and Schlather, M. (2001). Analogies and correspondences between variograms and covariance functions. Adv. Appl. Prob. 33, 617630.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego, CA.Google Scholar
Heine, V. (1955). Models for two-dimensional stationary stochastic processes. Biometrika 42, 170178.CrossRefGoogle Scholar
Huang, H. C. and Cressie, N. (1996). Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput. Statist. Data Anal. 22, 159175.CrossRefGoogle Scholar
Ismail, M. E. H. and Kelker, D. H. (1979). Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal. 10, 884901.CrossRefGoogle Scholar
Jones, R. H. and Zhang, Y. (1997). Models for continuous stationary space–time processes. In Modelling Longitudinal and Spatially Correlated Data (Lecture Notes Statist. 122), eds Gregoire, T. G. et al., Springer, Berlin, pp. 289298.CrossRefGoogle Scholar
Kent, J. T. (1978). Some probabilistic properties of Bessel functions. Ann. Prob. 6, 760770.CrossRefGoogle Scholar
Kent, J. T. (1989). Continuity properties for random fields. Ann. Prob. 17, 14321440.CrossRefGoogle Scholar
Kyriakidis, P. C. and Journel, A. G. (1999). Geostatistical space–time models: a review. Math. Geol. 31, 651684. (Correction: 32 (2000), 893.)CrossRefGoogle Scholar
Ladner, R., Shaw, K. and Abdelguerfi, M. (eds) (2002). Mining Spatio-Temporal Information Systems. Kluwer, Boston, MA.CrossRefGoogle Scholar
Lukacs, E. (1970). Characteristic Functions, 2nd edn. Griffin, London.Google Scholar
Ma, C. (2002). Spatio-temporal covariance functions generated by mixtures. Math. Geol. 34, 965975.CrossRefGoogle Scholar
Ma, C. (2003a). Families of spatio-temporal stationary covariance models. J. Statist. Planning Infer. 116, 489501.CrossRefGoogle Scholar
Ma, C. (2003b). Nonstationary covariance functions that model space–time interactions. Statist. Prob. Lett. 62, 411419.CrossRefGoogle Scholar
Ma, C. (2003c). Spatio-temporal stationary covariance models. J. Multivariate Anal. 86, 97107.CrossRefGoogle Scholar
Ma, C. (2004). The use of the variogram in construction of stationary covariance models. J. Appl. Prob. 41, 10931103.CrossRefGoogle Scholar
Ma, C. (2005a). Linear combinations of space–time covariance functions and variograms. IEEE Trans. Signal Process. 53, 857864.Google Scholar
Ma, C. (2005b). Semiparametric spatio-temporal covariance models with the autoregressive temporal margin. To appear in Ann. Inst. Statist. Math. CrossRefGoogle Scholar
Matérn, B. (1986). Spatial Variation: Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations, 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Meiring, W., Guttorp, P. and Sampson, P. D. (1998). Space–time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environ. Ecolog. Statist. 5, 197222.CrossRefGoogle Scholar
Miller, K. S. and Samko, S. G. (2001). Completely monotonic functions. Integral Trans. Spec. Funct. 12, 389402.CrossRefGoogle Scholar
Rodriguez-Iturbe, I., Marani, M., D' Odorico, P. and Rinaldo, A. (1998). On space–time scaling of cumulated rainfall fields. Water Resources Res. 34, 34613469.CrossRefGoogle Scholar
Ruiz-Medina, M. D. and Angulo, J. M. (2002). Spatio-temporal filtering using wavelets. Stoch. Environ. Res. Risk Assess. 16, 241266.CrossRefGoogle Scholar
Schoenberg, I. J. (1938a). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44, 522536.CrossRefGoogle Scholar
Schoenberg, I. J. (1938b). Metric spaces and completely monotone functions. Ann. Math. 39, 811841.CrossRefGoogle Scholar
Shkarofsky, I. P. (1968). Generalized turbulence space-correlation and wave-number spectrum-function pairs. Canad. J. Phys. 46, 21332153.CrossRefGoogle Scholar
Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York,CrossRefGoogle Scholar
Stein, M. L. (2005). Space–time covariance functions. J. Amer. Statist. Assoc. 100, 310321.CrossRefGoogle Scholar
Stoffer, D. S. (1986). Estimation and identification of space–time ARMAX models in the presence of missing data. J. Amer. Statist. Assoc. 81, 762772.CrossRefGoogle Scholar
Storvik, G., Frigessi, A. and Hirst, D. (2002). Stationary space–time Gaussian fields and their time autoregressive representation. Statist. Modelling 2, 139161.CrossRefGoogle Scholar
Stroud, J. R., Müller, P. and Sansó, B. (2001). Dynamic models for spatiotemporal data. J. R. Statist. Soc. B 63, 673689.CrossRefGoogle Scholar
Von Kármán, T. (1948). Progress in the statistical theory of turbulence. Proc. Nat. Acad. Sci. USA 34, 530539.CrossRefGoogle ScholarPubMed
Weber, R. O. and Talkner, P. (1993). Some remarks on spatial correlation function models. Mon. Weather Rev. 121, 26112617. (Correction: 127 (1999), 576.)2.0.CO;2>CrossRefGoogle Scholar
Whittle, P. (1954). On stationary processes in the plane. Biometrika 41, 434449.CrossRefGoogle Scholar
Whittle, P. (1962). Topographic correlation, power-law covariance functions, and diffusion. Biometrika 49, 305314.CrossRefGoogle Scholar
Wikle, C. K. and Cressie, N. (1999). A dimension-reduced approach to space–time Kalman filtering. Biometrika 86, 815829.CrossRefGoogle Scholar
Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions, Vol. 1, Basic Results. Springer, New York.Google Scholar
Zolotarev, V. M. (1981). Integral transformations of distributions and estimates of parameters of multidimensional spherically symmetric stable laws. In Contributions to Probability, eds Gani, J. and Rohatgi, V. K., Academic Press, New York, pp. 283305.CrossRefGoogle Scholar