Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T23:50:05.083Z Has data issue: false hasContentIssue false

The sectional Poisson Voronoi tessellation is not a Voronoi tessellation

Published online by Cambridge University Press:  01 July 2016

S. N. Chiu
Affiliation:
TU Bergakademie Freiburg
R. Van De Weygaert
Affiliation:
Canadian Institute for Astrophysics, Sterrewacht Leiden and Max Planck Institute für Astrophysik
D. Stoyan*
Affiliation:
TU Bergakademie Freiburg
*
∗∗∗ Postal address: TU Bergakademie Freiburg, Institut für Stochastik, 09596 Freiburg, Germany.

Abstract

Is the intersection between an arbitrary but fixed plane and the spatial Poisson Voronoi tessellation a planar Voronoi tessellation? In this paper a negative answer is given to this long-standing question in stochastic geometry. The answer remains negative for the intersection between a t-dimensional linear affine space and the d-dimensional Poisson Voronoi tesssellation, where 2 ≦ td − 1. Moreover, it is shown that each cell on this intersection is almost surely a non-Voronoi cell.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1996 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mathematics, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong.

∗∗

Present address: Kapteyn Instituut, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands.

References

Ash, P. F. and Bolker, E. D. (1986) Generalized Dirichlet tessellations. Geom. Dedicat. 20, 209243.Google Scholar
Aurenhammer, F. (1987) Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 7896.Google Scholar
Cowan, R. (1984) A model for random packing of disks in the neighbourhood of one disk. SIAM J. Appl. Math. 44, 839853.Google Scholar
Goldwirth, D. S., Da Costa, L. N. and Van De Weygaert, R. (1994) The two-point correlation function and the size of voids. Month. Not. R. Astron. Soc., submitted.Google Scholar
Imai, H., Iri, M. and Murota, K. (1985) Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput. 14, 93105.Google Scholar
Lorz, U. (1991) Distribution of cell characteristics of the spatial Poisson-Voronoi tessellation and plane sections. In Geometrical Problems of Image. Ser. Research in Informatics, 4. ed. Eckhardt, U. Hübler, A., Nagel, W. and Werner, G., pp. 171178. Akademie. Berlin.Google Scholar
Mecke, J. (1984) Parametric representation of mean values for stationary random mosaics. Math. Operat. Statist. 15, 437442.Google Scholar
Mecke, J. and Muche, L. (1995) The Poisson Voronoi tessellation. I. A basic identity. Math. Nachr., to appear.Google Scholar
Miles, R. E. (1974) A synopsis of ‘Poisson flats in euclidean spaces’. In Stochastic Geometry, ed. Harding, E. F. and Kendall, D. G., pp. 202227. Wiley, New York.Google Scholar
Miles, R. E. (1984) Sectional Voronoi tessellations. Rev. Union Math. Argentina 29, 310327.Google Scholar
Møller, J. (1989) Random tessellations in ℝd . Adv. Appl. Prob. 21, 3773.Google Scholar
Møller, J. (1994) Lectures on Random Voronoi Tessellations. (Lecture Notes in Statistics 87) Springer, New York.Google Scholar
Okabe, A., Boots, B. N. and Sugihara, K. (1992) Spatial Tessellations, Concepts and Applications of Voronoi Diagrams. Wiley, New York.Google Scholar
Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry. An Introduction. Springer, New York.Google Scholar
Rivier, N. (1993) Order and disorder in packing and froths. In Disorder and Granular Media, ed. Bideau, D. and Hansen, A., pp. 55102. Elsevier, Amsterdam.Google Scholar
Shamos, M. I. (1978) Computational Geometry. , Yale University.Google Scholar
Shamos, M. I. and Hoey, D. (1975) Closest-point problems. Proc. 16th Ann. IEEE Symposium on Foundations of Computer Science. Berkeley, CA. pp. 151162.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1987) Stochastic Geometry and Its Applications. Wiley, Chichester.Google Scholar
Stoyan, D. and Stoyan, H. (1980) Gedanken zur Entstehung der Säulenformen bei Basalten. Z. Geol. Wissensch. 8, 15291537.Google Scholar
Telley, H. (1989) Modélisation et Simulation Bidimensionelle de la Croissance des Polycristaux. , Ecole Polytechnique Fédérale de Lausanne.Google Scholar
Telley, H., Liebling, Th. and Mocellin, A. (1993) The Laguerre model of grain growth. Technical Report RO930124. Ecole Polytechnique Fédérale de Lausanne.Google Scholar
Van De Weygaert, R. (1991a) Voids and the Geometry of Large Scale Structure. , Leiden University.Google Scholar
Van De Weygaert, R. (1991b) Quasi-periodicity in deep redshift surveys. Month. Not. R. Astron. Soc. 249, 159163.CrossRefGoogle Scholar
Van De Weygaert, R. (1994) Fragmenting the Universe. III. The construction and statistics of 3-D Voronoi tessellation. Astron. Astrophys. 283, 361406.Google Scholar
Voronoi, G. F. (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques, Deuxième Mémoire: Recherches sur les paralléloèdres primitifis. J. Reine Angew. Math. 134, 198287.Google Scholar
Xue, X., Telley, H. and Liebling, Th. (1993) Polycrystal grain growth 3-D simulation by Laguerre diagrams: equation of movement. Technical Report RO931206. Ecole Polytechnique Fédérale de Lausanne.Google Scholar
Xue, X., Telley, H. and Liebling, Th. (1994) Polycrystal grain growth 3-D simulation by Laguerre diagrams: simulation result. Technical Report RO940222. Ecole Polytechnique Fédérale de Lausanne.Google Scholar