Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T23:03:40.088Z Has data issue: false hasContentIssue false

Records from stationary observations subject to a random trend

Published online by Cambridge University Press:  21 March 2016

Raúl Gouet*
Affiliation:
Universidad de Chile
F. Javier López*
Affiliation:
Universidad de Zaragoza
Gerardo Sanz*
Affiliation:
Universidad de Zaragoza
*
Postal address: Dpto. Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807, CNRS), Universidad de Chile, Beauchef 851, 8370456 Santiago, Chile. Email address: [email protected]
∗∗ Postal address: Dpto. Métodos Estadísticos and BIFI, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
∗∗ Postal address: Dpto. Métodos Estadísticos and BIFI, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove strong convergence and asymptotic normality for the record and the weak record rate of observations of the form Yn = Xn + Tn, n ≥ 1, where (Xn)nZ is a stationary ergodic sequence of random variables and (Tn)n ≥ 1 is a stochastic trend process with stationary ergodic increments. The strong convergence result follows from the Dubins-Freedman law of large numbers and Birkhoff's ergodic theorem. For the asymptotic normality we rely on the approach of Ballerini and Resnick (1987), coupled with a moment bound for stationary sequences, which is used to deal with the random trend process. Examples of applications are provided. In particular, we obtain strong convergence and asymptotic normality for the number of ladder epochs in a random walk with stationary ergodic increments.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2015 

References

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998). Records. John Wiley, New York.Google Scholar
Ballerini, R. and Resnick, S. (1985). Records from improving populations. J. Appl. Prob. 22, 487502.CrossRefGoogle Scholar
Ballerini, R. and Resnick, S. I. (1987). Records in the presence of a linear trend. Adv. Appl. Prob. 19, 801828.Google Scholar
Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.Google Scholar
Borovkov, K. (1999). On records and related processes for sequences with trends. J. Appl. Prob. 36, 668681.Google Scholar
De Haan, L. and Verkade, E. (1987). On extreme-value theory in the presence of a trend. J. Appl. Prob. 24, 6276.CrossRefGoogle Scholar
Dubins, L. E. and Freedman, D. A. (1965). A sharper form of the Borel–Cantelli lemma and the strong law. Ann. Math. Statist. 36, 800807.Google Scholar
Feuerverger, A. and Hall, P. (1996). On distribution-free inference for record-value data with trend. Ann. Statist. 24, 26552678.Google Scholar
Foster, F. G. and Stuart, A. (1954). Distribution-free tests in time-series based on the breaking of records, with discussion. J. R. Statist. Soc. B 16, 122.Google Scholar
Franke, J., Wergen, G. and Krug, J. (2010). Records and sequences of records from random variables with a linear trend. J. Statist. Mech. Theory Exp. 2010, P10013.Google Scholar
Glasserman, P. and Yao, D. D. (1995). Stochastic vector difference equations with stationary coefficients.break J. Appl. Prob. 32, 851866.CrossRefGoogle Scholar
Gouet, R., López, F. J. and Sanz, G. (2007). Asymptotic normality for the counting process of weak records and δ-records in discrete models. Bernoulli 13, 754781.CrossRefGoogle Scholar
Gouet, R., López, F. J. and Sanz, G. (2008). Laws of large numbers for the number of weak records. Statist. Prob. Lett. 78, 20102017.Google Scholar
Gouet, R., López, F. J. and Sanz, G. (2011). Asymptotic normality for the number of records from general distributions. Adv. Appl. Prob. 43, 422436.CrossRefGoogle Scholar
Grimmett, G. and Stirzaker, D. R. (2001). Probability and Random Processes, 3rd edn. Oxford University Press.Google Scholar
Gut, A. (2009). Stopped Random Walks. Limit Theorems and Applications, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Application. Academic Press, New York.Google Scholar
Ibragimov, I. A. and Linnik, Yu. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.Google Scholar
Majumdar, S. N. and Ziff, R. M. (2008). Universal record statistics of random walks and Lévy flights. Phys. Rev. Lett. 101, 050601.CrossRefGoogle ScholarPubMed
Majumdar, S. N., Schehr, G. and Wergen, G. (2012). Record statistics and persistence for a random walk with a drift. J. Phys. A 45, 142, 355002.CrossRefGoogle Scholar
Nevzorov, V. B. (2001). Records: Mathematical Theory. (Trans. Math. Monogr. 194), American Mathematical Society, Providence, RI.Google Scholar
Spitzer, F. (1964). Principles of Random Walk. Van Nostrand, Princeton, NJ.CrossRefGoogle Scholar
Wergen, G. and Krug, J. (2010). Record-breaking temperatures reveal a warming climate. Europhys. Lett. 92, 30008.Google Scholar
Wergen, G., Bogner, M. and Krug, J. (2011). Record statistics for biased random walks, with an application to financial data. Phys. Rev. E 83, 051109.CrossRefGoogle ScholarPubMed
Wergen, G., Franke, J. and Krug, J. (2011). Correlations between record events in sequences of random variables with a linear trend. J. Statist. Phys. 144, 12061222. (Erratum: 145 (2011), 14051406.)Google Scholar
Wergen, G., Hense, A. and Krug, J. (2014). Record occurrence and record values in daily and monthly temperatures. Climate Dynamics 42, 12751289.CrossRefGoogle Scholar
Yang, M. C. K. (1975). On the distribution of the inter-record times in an increasing population. J. Appl. Prob. 12, 148154.Google Scholar
Yokoyama, R. (1980). Moment bounds for stationary mixing sequences. Z. Wahrscheinlichkeitsth. 52, 4557.Google Scholar