Published online by Cambridge University Press: 04 January 2016
We consider regular variation of a Lévy process X := (Xt)t≥0 in with Lévy measure Π, emphasizing the dependence between jumps of its components. By transforming the one-dimensional marginal Lévy measures to those of a standard 1-stable Lévy process, we decouple the marginal Lévy measures from the dependence structure. The dependence between the jumps is modeled by a so-called Pareto Lévy measure, which is a natural standardization in the context of regular variation. We characterize multivariate regularly variation of X by its one-dimensional marginal Lévy measures and the Pareto Lévy measure. Moreover, we define upper and lower tail dependence coefficients for the Lévy measure, which also apply to the multivariate distributions of the process. Finally, we present graphical tools to visualize the dependence structure in terms of the spectral density and the tail integral for homogeneous and nonhomogeneous Pareto Lévy measures.