Published online by Cambridge University Press: 01 July 2016
For a typical cell of a homogeneous Poisson-Voronoi tessellation in ℝd, it is shown that the variance of the volume of the intersection of the typical cell with any measurable subset of ℝd is bounded by the variance of the volume of the typical cell. It is also shown that the variance of the volume of the intersection of the typical cell with a translation of itself is bounded by four times the variance of the volume of the typical cell. These bounds are applied to show large-dimensional volume degeneracy as d tends to ∞. An extension to the kth nearest-point Poisson-Voronoi tessellation for k ≥ 2 is also considered.