Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:30:15.221Z Has data issue: false hasContentIssue false

On the LLN for the number of vertices of a random convex hull

Published online by Cambridge University Press:  19 February 2016

Bruno Massé*
Affiliation:
Université du Littoral Côte d'Opale
*
Postal address: Université du Littoral Côte d'Opale, 50, Rue Ferdinand Buisson, BP699, 62228 Calais Cedex, France. Email address: [email protected]

Abstract

For several common parent laws, the number of vertices of a sample convex hull follows a kind of law of large numbers. We exhibit an example of a parent law which contradicts a general conjecture about this matter.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alagar, V. S. (1977). On the distribution of a random triangle. J. Appl. Prob. 14, 284297.Google Scholar
[2] Aldous, D. J., Fristedt, B., Griffin, P. S. and Pruitt, W. E. (1991). The number of extreme points in the convex hull of a random sample. J. Appl. Prob. 28, 287304.Google Scholar
[3] Brozius, H. (1989). Convergence in mean of some characteristics of the convex hull. Adv. Appl. Prob. 21, 526542.Google Scholar
[4] Buchta, C. (1990). Distribution-independent properties of the convex hull of random points. J. Theoret. Prob. 3, 387393.Google Scholar
[5] Cabo, A. J. and Groeneboom, P. (1994). Limit theorems for functionals of convex hulls. Prob. Theory Rel. Fields 100, 3155.Google Scholar
[6] Devroye, L. (1991). On the oscillation of the expected number of extreme points of a random set. Statist. Prob. Lett. 11, 281286.CrossRefGoogle Scholar
[7] Efron, B. (1965). The convex hull of a random set of points. Biometrika 52, 331343.Google Scholar
[8] Groeneboom, P. (1988). Limit theorems for convex hulls. Prob. Theory Rel. Fields 79, 327368.Google Scholar
[9] Henze, N. (1983). Random triangles in convex regions. J. Appl. Prob. 20, 111125.Google Scholar
[10] Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disc. Adv. Appl. Prob. 4, 478493.Google Scholar
[11] Hueter, I. (1994). The convex hull of a normal sample. Adv. Appl. Prob. 26, 855875.Google Scholar
[12] Kingman, J. F. C. (1969). Random secants of a convex body. J. Appl. Prob. 6, 660672.Google Scholar
[13] Küfer, K. H. (1994). On the approximation of a ball by random polytopes. Adv. Appl. Prob. 26, 876892.Google Scholar
[14] Mannion, D. (1994). The volume of a tetrahedron whose vertices are choosen at random in the interior of a parent tetrahedron. Adv. Appl. Prob. 26, 577596.Google Scholar
[15] Massé, B., (1993). Principes d'invariance pour la probabilité d'un dilaté de l'enveloppe convexe d'un échantillon. Ann. Inst. H. Poincaré Prob. Statist. 29, 3755.Google Scholar
[16] Massé, B., (1995). Invariance principle for the deviation between the probability content and the interior point proportion of a random convex hull. J. Appl. Prob. 32, 10411047.Google Scholar
[17] Massé, B., (1999). On the variance of the number of extreme points of a random convex hull. Statist. Prob. Lett. 44, 123130.Google Scholar
[18] Reed, W. J. (1974). Random points in a simplex. Pacific J. Math. 54, 183198.Google Scholar
[19] Schneider, R. (1988). Random approximation of convex sets. J. Microscopy 15, 211227.Google Scholar