Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T17:22:46.511Z Has data issue: false hasContentIssue false

On q-scale functions of spectrally negative Lévy processes

Published online by Cambridge University Press:  02 September 2022

Anita Behme*
Affiliation:
Technische Universität Dresden
David Oechsler*
Affiliation:
Technische Universität Dresden
René Schilling*
Affiliation:
Technische Universität Dresden
*
*Postal address: Technische Universität Dresden, Institut für Mathematische Stochastik, Helmholtzstraße 10, 01069 Dresden, Germany.
*Postal address: Technische Universität Dresden, Institut für Mathematische Stochastik, Helmholtzstraße 10, 01069 Dresden, Germany.
*Postal address: Technische Universität Dresden, Institut für Mathematische Stochastik, Helmholtzstraße 10, 01069 Dresden, Germany.

Abstract

We obtain series expansions of the q-scale functions of arbitrary spectrally negative Lévy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit q-scale functions. Moreover, we study smoothness properties of the q-scale functions of spectrally negative Lévy processes with infinite jump activity. This complements previous results of Chan et al. (Prob. Theory Relat. Fields 150, 2011) for spectrally negative Lévy processes with Gaussian component or bounded variation.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Singapore.CrossRefGoogle Scholar
Avram, F., Grahovac, D. and Vardar-Acar, C. (2020). The W, Z scale functions kit for first passage problems of spectrally negative Lévy processes, and applications to control problems. ESAIM Prob. Statist. 24, 454525.CrossRefGoogle Scholar
Bertoin, J. (1996). On the first exit time of a completely asymmetric stable process from a finite interval. Bull. London Math. Soc. 28, 514520.CrossRefGoogle Scholar
Bertoin, J. (1997). Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Prob. 7, 156169.CrossRefGoogle Scholar
Bertoin, J. (1998). Lévy Processes. Cambridge University Press.Google Scholar
Bertoin, J. (1999). Subordinators: examples and applications. In Lectures on Probability Theory and Statistics: École d’Été de Probabilités de Saint-Flour XXVII—1997, eds J. Bertoin, F. Martinelli and Y. Peres, Springer, Berlin, pp. 191.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation (reprint with additions). Cambridge University Press.Google Scholar
Chan, T., Kyprianou, A. E. and Savov, M. (2011). Smoothness of scale functions for spectrally negative Lévy processes. Prob. Theory Relat. Fields 150, 691708.CrossRefGoogle Scholar
Doney, R. (2007). Fluctuation Theory for Lévy Processes. Springer, Berlin.Google Scholar
Döring, L. and Savov, M. (2011). (Non)differentiability and asymptotics for potential densities of subordinators. Electron. J. Prob. 16, 470503.CrossRefGoogle Scholar
Egami, M. and Yamazaki, K. (2014). Phase-type fitting of scale functions for spectrally negative Lévy processes. J. Comput. Appl. Math. 264, 122.CrossRefGoogle Scholar
Emery, D. J. (1973). Exit problem for a spectrally positive process. Adv. Appl. Prob. 5, 498520.CrossRefGoogle Scholar
Erlang, A. K. (1909). Sandsynlighedsregning og telefonsamtaler. Nyt Tidsskr. Mat. B20, 33–39. English translation: The theory of probabilities and telephone conversations, Trans. Danish Acad. Tech. Sci. 2 (special issue: The Life and work of A. K. Erlang), 131137, 1948.Google Scholar
Gripenberg, G. (1978). On positive, nonincreasing resolvents of Volterra equations. J. Differential Equat. 30, 380390.CrossRefGoogle Scholar
Gripenberg, G. (1980). On Volterra equations of the first kind. Integral Equat. Operat. Theory 3, 473488.CrossRefGoogle Scholar
Gripenberg, G., London, S. O. and Staffans, O. (2010). Volterra Integral and Functional Equations. Cambridge University Press.Google Scholar
Hubalek, F. and Kyprianou, A. E. (2010). Old and new examples of scale functions for spectrally negative Lévy processes. In Sixth Seminar on Stochastic Analysis, Random Fields and Applications, eds R. Dalang, F. Dozzi and F. Russo, Birkhäuser, Boston, pp. 119146.Google Scholar
Kuznetsov, A., Kyprianou, A. E. and Rivero, V. (2013). The theory of scale functions for spectrally negative Lévy processes. In Lévy Matters II, eds O. E. Barndorff-Nielsen, J. Bertoin, J. Jacod and C. Klüppelberg, Springer, Berlin, pp. 97186.Google Scholar
Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications, 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Kyprianou, A. E., Rivero, V. and Song, R. (2010). Convexity and smoothness of scale functions and de Finetti’s control problem. J. Theoret. Prob. 23, 547564.CrossRefGoogle Scholar
Landriault, D. and Willmot, G. E. (2020). On series expansions for scale functions and other ruin-related quantities. Scand. Actuarial J. 4, 292306.CrossRefGoogle Scholar
Rao, M., Song, R. and Vondraček, Z. (2006). Green function estimates and Harnack inequality for subordinate Brownian motions. Potential Anal. 25, 127.CrossRefGoogle Scholar
Rogers, L. C. G. (1990). The two-sided exit problem for spectrally positive Lévy processes. Adv. Appl. Prob. 22, 486487.CrossRefGoogle Scholar
Rogers, L. C. G. (2000). Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J. Appl. Prob. 37, 11731180.CrossRefGoogle Scholar
Rudin, W. (1991). Functional Analysis, 2nd edn. McGraw-Hill, New York.Google Scholar
Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon.Google Scholar
Sato, K. (2013). Lévy Processes and Infinitely Divisible Distributions: Revised Edition. Cambridge University Press.Google Scholar
Schilling, R. L., Song, R. and Vondraček, Z. (2012). Bernstein Functions: Theory and Applications, 2nd edn. Walter de Gruyter, Berlin.CrossRefGoogle Scholar
Song, R. and Vondraček, Z. (2006). Potential theory of special subordinators and subordinate killed stable processes. J. Theoret. Prob. 19, 817847.CrossRefGoogle Scholar
Widder, D. V. (2015). The Laplace Transform. Princeton University Press.Google Scholar