Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T17:05:54.578Z Has data issue: false hasContentIssue false

On a stochastic difference equation and a representation of non–negative infinitely divisible random variables

Published online by Cambridge University Press:  01 July 2016

Wim Vervaat*
Affiliation:
Katholieke Universiteit, Nijmegen
*
Postal address: Mathematisch Instituut, Katholieke Universiteit, Toernooiveld, Nijmegen, The Netherlands.

Abstract

The present paper considers the stochastic difference equation Yn = AnYn-1 + Bn with i.i.d. random pairs (An, Bn) and obtains conditions under which Yn converges in distribution. This convergence is related to the existence of solutions of and (A, B) independent, and the convergence w.p. 1 of ∑ A1A2 ··· An-1Bn. A second subject is the series ∑ Cnf(Tn) with (Cn) a sequence of i.i.d. random variables, (Tn) the sequence of points of a Poisson process and f a Borel function on (0, ∞). The resulting random variable turns out to be infinitely divisible, and its Lévy–Hinčin representation is obtained. The two subjects coincide in case An and Cn are independent, Bn = AnCn, An = U1/αn with Un a uniform random variable, f(x) = ex.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1979 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported in part by the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

Azencott, R. (1970) Espaces de Poisson des groupes localement compacts. Lecture Notes in Mathematics 148, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Bawa, V. S. (1975) On optimal pollution control policies. Management Sci. 21, 13971404.CrossRefGoogle Scholar
Borovkov, A. A. (1978) Ergodic theorems and stability theorems for a class of stochastic equations and their applications. Theory Prob. Appl. 23, 241262.Google Scholar
Bougerol, P. (1978) Fonctions de concentration sur certains groupes localement compacts. Z. Wahrscheinlichkeitsth. 45, 135157.Google Scholar
Brockwell, P. J. and Brown, B. M. (1978) Expansions for the positive stable laws. Z. Wahrscheinlichkeitsth. 45, 213224.Google Scholar
Cavalli-Sforza, L. (1975) Cultural and biological evolution: a theoretical inquiry. In Proceedings of the Conference on Directions for Mathematical Statistics, ed. Ghurye, S. G. Suppl. Adv. Appl. Prob. 7, 9099.Google Scholar
Cavalli-Sforza, L. and Feldman, M. W. (1973) Models for cultural inheritance I. Group mean and within group variation. Theoret. Popn. Biol. 4, 4255.CrossRefGoogle ScholarPubMed
Chamayou, J. M. F. (1973a) A probabilistic approach to a differential-difference equation arising in analytic number theory. Math. Comput. 27, 197203.CrossRefGoogle Scholar
Chamayou, J. M. F. (1973b) Volterra's functional integral equations of the statistical theory of damage. J. Computational Phys. 13, 7093.CrossRefGoogle Scholar
Chamayou, J. M. F. (1978) On the simulation of shot noise and some other random variables. Stoch. Proc. Appl. 6, 305316.Google Scholar
Chamayou, J. M. F. and Schorr, B. (1975) On a class of random variables arising in atomic cascade models. Report, European Organization for Nuclear Research, Geneva.Google Scholar
Chandrasekhar, S. and Münch, G. (1950) The theory of the fluctuations in brightness of the Milky Way, I and II. Astrophys. J. 112, 380398.CrossRefGoogle Scholar
Chung, K. L. (1968) A Course in Probability Theory. Harcourt, Brace and World, New York.Google Scholar
Crépel, P. (1977) Contribution à l'étude du comportement asymptotique des marches aléatoires. Thesis, Université de Rennes.Google Scholar
Cressie, N. (1975) A note on the behaviour of the stable distributions for small index α. Z. Wahrscheinlichkeitsth. 33, 6164.Google Scholar
Daley, D. J. (1971) The definition of a multidimensional generalization of shot noise. J. Appl. Prob. 8, 125135.Google Scholar
De Bruijn, N. G. (1951a) On the number of positive integers ≤x and free of prime factors >y . Nederl. Akad. Wetensch. Proc. Ser. A 54, 5060 (= Nederl. Akad. Wetensch. Indag. Math. 13, 2–12).Google Scholar
De Bruijn, N. G. (1951b) The asymptotic behaviour of a function occurring in the theory of primes. J. Indian Math. Soc. 15, 2532.Google Scholar
Elie, L. (1975) Etude du renouvellement pour certains groups résolubles. C. R. Acad. Sci. Paris A 280, 11491152.Google Scholar
Elie, L. and Raugi, M. (1975) Fonctions harmoniques sur certains groupes résolubles. C. R. Acad. Sci. Paris A 280, 377379.Google Scholar
Feller, W. (1968) An Introduction to Probability Theory and its Applications, Vol. I, 3rd edn. Wiley, New York.Google Scholar
Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. II, 2nd edn. Wiley, New York.Google Scholar
Ferguson, T. S. and Klass, M. J. (1972) A representation of independent increment processes without Gaussian components. Ann. Math. Statist. 43, 16341643.CrossRefGoogle Scholar
Gaver, D. P. Jr. (1964) An absorption probability problem. J. Math. Anal. Appl. 9, 384393.CrossRefGoogle Scholar
Gaver, D. P. and Lewis, P. A. W. (1978) First-order autoregressive Gamma sequences and point processes. Preprint, Naval Postgraduate School, Monterey, CA.Google Scholar
Gaver, D. P. and Miller, R. G. (1962) Limiting distributions for some storage problems. In Studies in Applied Probability and Management Science, ed. Arrow, Karlin and Scarf, , Stanford University Press, Stanford, CA.Google Scholar
Gihman, I. I. and Skorohod, A. V. (1974) The Theory of Stochastic Processes I. Springer-Verlag, Berlin.Google Scholar
Gilbert, E. N. and Pollak, H. O. (1960) Amplitude distributions of shot noise. Bell. System Tech. J. 39, 333350.Google Scholar
Gilchrist, J. and Thomas, J. (1975) A shot process with burst properties. Adv. Appl. Prob. 7, 527541.Google Scholar
Gončarov, V. L. (1944) On the field of combinatorial analysis. Izv. Akad. Nauk SSSR Ser. Mat. 8, 348 and Transl. Amer. Math. Soc. Ser. 2 19 (1962), 1–46.Google Scholar
Grenander, U. (1961) Stochastic groups. Ark. Mat. 4, 163183, 189–207, 333–345.Google Scholar
Grenander, U. (1963) Probabilities on Algebraic Structures. Almqvist and Wiksell, Stockholm; Wiley, New York.Google Scholar
Grincevičius, A. K. (1974a) On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Prob. Appl. 19, 163168.Google Scholar
Grincevičius, A. K. (1974b) A central limit theorem for the group of linear transformations of the real axis. Soviet Math. Dokl. 15, 15121515.Google Scholar
Grincevičius, A. K. (1975a) Limit theorems for products of random linear transformations on the line. Lithuanian Math. Trans. 15, 568579.Google Scholar
Grincevičius, A. K. (1975b) One limit distribution for a random walk on the line. Lithuanian Math. Trans. 15, 580589.CrossRefGoogle Scholar
Grincevičius, A. K. (1977) On the convergence of the random series ∑ β j ξ1 ··· ξ j-1 (in Russian). Abstracts of the Second International Vilnius Conference on Probability, Vilnius.Google Scholar
Grincevičius, A. K. (1978) Approximation in variation of distributions of products of random linear transformations of a straight line. Lithuanian Math. Trans. 18, 183190.Google Scholar
Guess, H. and Gillespie, J. H. (1977) Diffusion approximations to linear stochastic difference equations with stationary coefficients. J. Appl. Prob. 14, 5974.Google Scholar
Guivarc'h, Y. (1979) Quelques propriétés asymptotiques des produits de matrices aléatoires. In Ecole d'Eté de Probabilités de Saint-Flour VIII 1978. Lecture Notes in Mathematics, Springer-Verlag, Berlin.Google Scholar
Guivarc'h, Y., Keane, M. and Roynette, B. (1977) Marches aléatoires sur les groupes de Lie. Lecture Notes in Mathematics 624, Springer-Verlag, Berlin.Google Scholar
Hawkes, A. G. and Oakes, D. (1974) A cluster process representation of a self-exciting process. J. Appl. Prob. 11, 493503.Google Scholar
Heyer, H. (1975) Gauss distributions and central limit theorem for locally compact groups. In Limit Theorems of Probability Theory, ed. Révész, P. North-Holland, Amsterdam.Google Scholar
Iglehart, D. and Kennedy, D. P. (1970) Weak convergence of flag processes. J. Appl. Prob. 7, 747753.CrossRefGoogle Scholar
Jacobs, P. A. and Lewis, P. A. W. (1977). A mixed autoregressive moving-average exponential sequence and point process (earma 1, 1). Adv. Appl. Prob. 9, 87104.Google Scholar
Karlin, S. and Taylor, H. M. (1975) A First Course in Stochastic Processes, 2nd edn. Academic Press, New York.Google Scholar
Keilson, J. and Mermin, N. D. (1959) The second-order distribution of integrated shot noise. IRE Trans. Inf. Theory IT-5, 7577.CrossRefGoogle Scholar
Keilson, J. and Steutel, F. W. (1972) Families of infinitely divisible distributions closed under mixing and convolution. Ann. Math. Statist. 43, 242250.CrossRefGoogle Scholar
Kesten, H. (1973) Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207248.Google Scholar
Lassner, F. (1974a) Sommes de produits de variables aléatoires indépendantes. Thesis, Université de Paris VI.Google Scholar
Lassner, F. (1974b) Sur certains types de mécanismes additifs en economie stochastique. C. R. Acad. Sci. Paris A279, 3336.Google Scholar
Lawrance, A. J. and Kottegoda, N. T. (1977) Stochastic modelling of riverflow time series. J. R. Statist. Soc. A140, 147.Google Scholar
Lawrance, A. J. and Lewis, P. A. W. (1977) An exponential moving-average sequence and point processes (ema1). J. Appl. Prob. 14, 98113.Google Scholar
Lev, G. Š. (1977) Asymptotic properties of the extinction probability for a Markov multiplication process. Theory Prob. Appl. 22, 825831.Google Scholar
Lev, G. Š. (1972) Semi-Markov processes of multiplication with drift. Theory Prob. Appl. 17, 159164.Google Scholar
Lev, G. Š. (1975) Asymptotic properties of the probability of degeneration after time t for Markov multiplication processes. Theory Prob. Appl. 20, 161169.Google Scholar
Lukacs, E. (1970) Characteristic Functions, 2nd edn. Griffin, London.Google Scholar
Maksimov, V. M. (1973) A generalized Bernoulli scheme and its limit distributions. Theory Prob. Appl. 18, 521530.Google Scholar
Mukherjea, A. and Sun, T. C. (1979) Convergence of products of independent random variables with values in a discrete semigroup. Z. Wahrscheinlichkeitsth. 46, 227236.Google Scholar
Müller, D. W. (1968) Verteilungs-Invarianzprinzipien für das starke Gesetz der grossen Zahl. Z. Wahrscheinlichkeitsth. 10, 173192.Google Scholar
Paulson, A. S. and Uppuluri, V. R. R. (1972) Limit laws of a sequence determined by a random difference equation governing a one-compartment system. Math. Biosci. 13, 325333.CrossRefGoogle Scholar
Perrakis, S. and Henin, C. (1974) Evaluation of risky investments with random timing of cash returns. Management Sci. 21, 7986.CrossRefGoogle Scholar
Petrov, V. V. (1975) Sums of Independent Random Variables. Springer-Verlag, Berlin.Google Scholar
Picinbono, B., Bendjaballah, B. and Pouget, J. (1970) Photoelectron shot noise. J. Math. Phys. 11, 21662176.Google Scholar
Raugi, A. (1977) Fonctions harmoniques sur les groupes localement compacts à base dénombrable et théorème de la limite centrale pour les groupes de Lie sémi-simples. Bull. Soc. Math. France Mémoire 54, 1118.Google Scholar
Rice, J. (1977) On generalized shot noise. Adv. Appl. Prob. 9, 553565.Google Scholar
Rousseau, M. (1971) Statistical properties of optical glass fields scattered by random media. J. Optical Soc. Amer. 61, 13071316.CrossRefGoogle Scholar
Ryff, J. V. (1970) Measure preserving transformations and rearrangements. J. Math. Anal. Appl. 31, 449458.Google Scholar
Sato, K. (1973) A note on infinitely divisible distributions and their Lévy measures. Sci. Rep. Tokyo Kyoiku Daigaku A12, 101109.Google Scholar
Shanbhag, D. N. and Sreehari, M. (1977) On certain self-decomposable distributions. Z Wahrscheinlichkeitsth. 38, 217222.Google Scholar
Širjaev, A. N. (1960) Some problems in the spectral theory of higher order moments I. Theory Prob. Appl. 5, 265284.Google Scholar
Solomon, F. (1975) Random walks in a random environment. Ann. Prob. 3, 131.Google Scholar
Steutel, F. W. (1971) Preservation of Infinite Divisibility Under Mixing. Mathematisch Centrum, Amsterdam.Google Scholar
Steutel, F. W. (1973) Some recent results in infinite divisibility. Stoch. Proc. Appl. 1, 125143.Google Scholar
Steutel, F. W. (1974) On the tails of infinitely divisible distributions. Z. Wahrscheinlichkeitsth. 28, 273276.CrossRefGoogle Scholar
Stevens, C. (1972) Inference about membrane properties from electrical noise measurements. Biophys. J. 12, 10281047.CrossRefGoogle ScholarPubMed
Székely, G. J. (1973) On limit distributions. Ann. Univ. Sci. Budapest. Eõtvõs Sect. Math. 16, 6567.Google Scholar
Székely, G. J. (1975) On the polynomials of independent random variables. In Limit Theorems of Probability Theory, ed. Révész, P., North-Holland, Amsterdam, 365371.Google Scholar
Takács, L. (1954) On secondary processes generated by a Poisson process and their applications in physics. Acta Math. Acad. Sci. Hung. 5, 203236.Google Scholar
Takács, L. (1955) On stochastic processes connected with certain physical recording apparatuses, Acta Math. Acad. Sci. Hung. 6, 363380.Google Scholar
Takács, L. (1956) On secondary stochastic processes generated by recurrent processes. Acta Math. Acad. Sci. Hung. 7, 1729.Google Scholar
Takács, L. (1957) Über die wahrscheinlichkeitstheoretische Behandlung der Anodenstromschwankungen von Elektronenröhren. Acta Phys. Acad. Sci. Hung. 7, 2550.Google Scholar
Tsurui, A. and Osaki, S. (1976) On a first-passage problem for a cumulative process with exponential decay. Stoch. Proc. Appl. 4, 7988.CrossRefGoogle Scholar
Uppuluri, V. R. R., Feder, P. I. and Shenton, L. R. (1967) Random difference equations occurring in one-compartment models. Math. Biosci. 2, 143171.CrossRefGoogle Scholar
Vervaat, W. (1972) Success Epochs in Bernoulli Trials (with Applications in Number Theory). Mathematisch Centrum, Amsterdam.Google Scholar
Vervaat, W. (1974) On records, maxima and a stochastic difference equation. Report 73–11, Department of Mathematics, University of Amsterdam.Google Scholar
Vervaat, W. (1977) On records, maxima and a stochastic difference equation (revision). Report 7702, Mathematisch Instituut, Katholieke Universiteit, Nijmegen.Google Scholar
Weiss, G. (1973) Filtered Poisson Processes as Models for Daily Streamflow Data. Thesis, University of London.Google Scholar
Weiss, G. (1978) Shot noise models for the generation of synthetic stream-flow data. Water Resources Res. 13, 101108.Google Scholar
Westcott, M. (1976) On the existence of a generalized shot-noise process. In Studies in Probability and Statistics. Papers in Honour of E. J. G. Pitman. ed. Williams, E. J., North-Holland, Amsterdam, 7388.Google Scholar
Whitt, W. (1972) Stochastic Abelian and Tauberian theorems. Z. Wahrscheinlichkeitsth. 22, 251267.Google Scholar
Yeo, G. F. (1974) A finite dam with exponential release. J. Appl. Prob. 11, 122133.Google Scholar
Zolotarev, V. M. (1962) On a general theory of multiplication of independent random variables. Soviet Math. 3, 166170.Google Scholar